Poisonous Snakes
OF THE WORLD
(

Poisonous Snakes

OF THE WORLD

A MANUAL FOR USE BY
 USS. AMPHIBIOUS FORCES

NAVMED P-5099

DEPARTMENT OF THE NAVY BUREAU OF MEDICINE AND SURGERY

United States
Government Printing Office
Washington, D. C.

FOREWORD

The first edition of the ONI 3-62, Poisonous Snakes of the World, was published on 30 June 1962 under the auspices of the Office of Naval Intelligence of the Office of the Chief of Naval Operations. The widespread interest generated by this publication and the increasing commitments of Navy and Marine forces throughout the world, particularly in Southeast Asia, have served to emphasize the need for a more authoritative manual that can be used for training and in support of military operations. The Bureau of Medicine and Surgery, having recognized this necessity, assumed the responsibility for a more definitive and comprehensive up-to-date presentation of the problems relating to venomous snakes.

Commander Granville M. Moore, MSC, USN, was appointed as coordinator and principal editor to work with a committee of eminent herpetologists, selected by the American Society of Ichthyologists and Herpetologists, to revise the manual. The Bureau of Medicine and Surgery gratefully acknowledges the important contributions made by this committee and the services provided by the New York Zoological Society.

First aid procedures in cases of snakebite as described herein are approved by the Bureau of Medicine and Surgery and the specific treatment set forth represents the official policy of this Bureau at the time of publication.

This manual is recommended for use by all ships, stations, and commands in need of authoritative information about snakes and snakebites.

R. B. Brown
Vice Admiral, MC
United States Navy
Surgeon General and Chief, Bureau of Medicine and Surgery

PREFACE

This revision has been made with the assistance of a committee appointed by the American Society of Ichthyologists and Herpetologists. The committee consisted of Dr. Herndon G. Dowling, Dr. Sherman A. Minton, Jr. (chairman), and Dr. Findlay E. Russell. The text has been largely rewritten, however, many of the original illustrations have been retained.

This manual is intended to serve as a training aid and as an identification guide to the most widely distributed species of dangerously venomous snakes. Geographic distribution of all currently recognized species of venomous snakes is presented in tabular form. Information on habitat and biology of important snake species has been provided.

First aid procedures in case of snakebite and suggestions for the definitive medical management of the snakebite victim are presented. There is a table of world sources of antivenins.

The manuscript for the text of this manual was submitted for publication on 1 November 1965. A few additions have been made during the editing and proofreading of the text but most of the included information is as of the date of submission.

ACKNOWLEDGMENTS

In revising this manual, the members of the Committee gratefully acknowledge the advice and assistance of the following, each of whom is a recognized authority in some aspect of biology or medicine: C. A. Ahuga, Steven C. Anderson, H. D. Baernstein, Charles M. Bogert, F. W. Buess, W. Leslie Burger, Roger Conant, Carl Gans, Joseph F. Gennaro, Jr., Itzchak Gilboa, Alice C. Grandison, Laurence M. Klauber, Robert E. Kuntz, Alan E. Leviton, Hymen Marx, Samuel B. McDowell, K. A. C. Powell, George B. Rabb, H. Alistair Reid, Janis A. Roze, the late F. A. Shannon, Harold Voris, John E. Werler, and Eric Worrell.

Personnel of the Medical Photography Division, Naval Medical School, National Naval Medical Center, prepared most of the line illustrations and furnished some of the photographs. Dr. T. E. Reed, Director of the National Zoological Park, kindly made available certain specimens for photography. The index was prepared by Itzchak Gilboa.
S. A. M., Jr.
H. G. D.
F. E. R.

TABLE OF CONTENTS

Page
Foreword iii
Preface iv
Acknowledgments v
List of Tables viii
List of Color Plates viii
CHAPTER I
General Information 1
CHAPTER II
Precautions to Avoid Snakebite 2
CHAPTER III
How to Recognize Snake Venom Poisoning (Symptoms and Signs) 4
CHAPTER IV
First Aid 13
CHAPTER V
Medical Treatment 20
CHAPTER VI
Recognition of Poisonous Snakes* 25
Distribution and Identification of Poisonous Land Snakes** 33
Section 1, North Imerica 35
Section 2, Mexico and Central America 47
Section 3, South America and the West Indies 59
Section 4, Europe 71
Section 5, North Africa 74
Section 6, Central and Southern Ifrica 85
Section 7, The Near and Middle East 105
Section 8, Southeast 1sia 115
Section 9, The Far East 131
Section 10, Australia and the Pacific Islands 139
CHAPTER VIII
The Sea Snakes 157
CHAPTER IX
Antivenin Sources 169
Glossary 181
General References 184
Index 186

[^0]
LIST OF TABLES

Page

1. Yield and Lethality of Venoms of Important Poisonous Snakes 6
2. Symptoms and Signs of Crotalid Bites 8
\because Symptom- amd Sigu- of Viperid Bites 9
t. Symptoms and Signs of Elapid Bites 10
b. Distribution of Poisonous Suakes of North America 36
3. Distribution of Poisonous Snakes of Mexico and Central America 48
4. Distribution of Poisonous Snakes of South America and the West Indies 60
5. Distribution of Poisonous Snakes of Europe 72
6. Distribution of Poisonons Snakes of North Africa 78
7. Distribution of Poisonous Snakes of Central and couthern \backslash fric:a 86
8. Distribution of Poisonous Smakes of the Near and Middle Fast 106
9. Distribution of Poisonous Snakes of Southeast Asia 116
10. Distribution of Poisonous Snakes of the Far East 132
11. Distribution of Poisonous Snakes of Australia and the Pacific Islands 140
12. Distribution of Sea Snakes 158
LIST OF COLOR PLATES
I. Representative American Pit Vipers (Crotalidae) 205
II. Representatives of Some Poisonous Snake Families 206
III. Representatives of Some Poisonous Snake Families 207
IV. Iepresentative Pit Vipers (Crotalidae) 208
V. Some Poisonous Snakes of Δ sia 209
VI. Some Poisonous Snakes of Asia 210
VII. Some Poisonous snakes of Ifrica $\because 11$
VIII. Some Poisonous Snakes of Africa 212

Chapter I

GENERAL INFORMATION

Persomel of the U.S. Nary and Marine Corps may find themselves stationed or visiting in many parts of the world, particularly the countries bordering the oceans. In some of these countries, snakebite is a significant public health hazard. The risk of being bitten increases during amphibious operations, especially in tropical and subtropical regions. During such operations the natural habitat of venomons snakes may be disturbed so that exposure to them is markedly increased.

American military forces have never experienced casualty rates from suake venom poisoning sufficiently high to jeopardize the outcome of an operation. However, the threat of snakebite may creato a morale problem sufficient to delay an operation or cause unnecessary fear during its execution. While suakebite has been rare and fatalities therefrom have been even more uncommon in the military forces, it does constitute a medical emergency requiring immediate attention and considerable judgment in management.

This manual is designed to facilitate identification of the major groups (genera) of poisonous snakes and to identify the most dangerous species. It is not practical to by-pass the specialized terminology of herpetology completely, but herpetological terms are avoided whenever possible.

Those that are used are defined in the glossary or are evident from examination of the figures.

Geographic definitions of regions discussed are provided because of differences in the use of such words as Middle East. Southeust Asia. Near E'ast, pt reterm. Snakes found in more than one region are listed in each.

A second aim of the mamual is to give suggestions for preventing smakebite, ind a third aim is to indicate practical first aid measures should snakebite occur. Principles and procedures for medical management of snake renom poisoning aro discussed, hut it is not a purpose of this mamal to evaluate all of the varied and sometimes conflicting therapeutic regimens that have appeared in the medical literature.

I list of general references is included at the end of the manual, and most chapters and sections are followed by a list of specific references. I space for notes will be formed at the end of most chapters and sections. This may be used for additional references and information gained mader local eonditions.

The intex hats been prepared as a major source of information. Many local or vernacular names are found only in the index, where they are referred to the scientific name of the species.

Chapter II

PRECAUTIONS TO AVOID SNAKEBITE

'The best way to lieep from being bitten by snakes is to avoid them. However, since there is little choice in a duty assignment, there are certain precautions to be taken in "snake country:" In such areas it is advisable to carry a snakebite first aid kit. Snakebite Kit, Suction (FSN 6545-952-5395), may be ordered through the Armed Forces Supply Agency. When such kits are not arailable, the following items can be substituted: an antiseptic, a razor or sharp knife, a piece of rubber tubing or similar item to be used as a toumiquet, and any device capable of providing suction. 110 ml . syringe with needle, a vial of physiologic saline and two vials of adrenalin shomal also be carried for use in administering horse serum sensitivity tests (see p. 16).

Reminders

When in snake infested country it is important to:

1. Remember that snakes are probably more afraid of humans than humans are of snakes. Given the chance snakes will usually retreat to avoid an encounter.
2. Learn to recognize the poisonous snakes in the area of operation. Avoid killing harmless snakes.
3. Avoid walking around after dark. Many venomous snakes are nocturnal and will travel at night far beyond the distances they may venture during the day. If you must walk at night be sure to wear boots.
4. Remember that snakes in general avoid di-
rect sunlight, and that they are most active at moderate temperatures.
5. Avoid caves, open tombs, and known snake den crens. Snakes live in areas which afford protection and which may be frequented by other small animals. They may be found in considerable numbers in caves and open tombs during the hibermation period which in most snakes extends from fill until early spring. 'They may also seek out these same areas during the summer months.
6. Remember that poisonous snakes may be found at high altitudes, and that they can climb trees and fences.
7. Walk on clear paths as much as possible. Avoid tall grass and areas of heavy underbrush or ground covering. Wear protective clothing when entering such areas.
8. Avoid swimming in waters where snakes abound. Most land species of poisonous snakes swim well, and may, under unusual circumstances, bite while in water. Sea snakes are not uncommon in the Indo-Pacific area, and while most species are docile some may bite when handled or disturbed.
9. Avoid sleeping on the ground whenever possible.
10. Avoid walking close to rocky ledges. Give snakes a wide passage, just in case.
11. Avoid hiking alone in snake-infested areas.
12. Avoid horse-play involving live or dead snakes. Snakes should not be handled carelessly. Teasing people with smakes may have unexpected and unfortunate results.

Specific Precautions

The following $D O N^{\prime} T s$ are suggested for those in snake country.

1. DON'T put your hands or feet in places you can not look, and

DON'T put them in places without first looking.
2. DON'T turn or lift a rock or fallen tree with your hands. Move it with a stick, or with your foot if your ankle and leg are properly protected.
3. DON'T disturb snakes.
4. DON'T put your sleeping bag near rock piles or rubbish piles or near the entrance to a cave.
5. DON"T sit down without first looking around carefully.
6. DON'T gather firewood after dark.
7. DON'I' step over a \log if the other side is not visible. Step on it first.
8. DON"I enter snake-infested areas without adequate protective clothing.
9. DON'T handle freshly killed renomous snakes. Nlways carry them on a stick or in a bag if they must be returned to the command post.
10. DON"T crawl under a fence in high grass, or in an uncleared area.
11. DON'T go out of your way to kill a snake. Thousands of people are bitten by snakes each year merely becanse they try to kill them without knowing anything of their habits or habitats.
12. Finally, DON"I PINIC!

Chapter III

HOW TO RECOGNIZE SNAKE VENOM POISONING Symptoms and Signs

INTRODUCTION

In most parts of the world, bites by nonvenomous smakes occur far more frequently than bites by venomons snakes. Since the differentiation is often difticult, all rictims of snakebite should be brought under the care of a physician as quickly as possible. Whenever feasible the offending snake should be killed and brought with the victim to the physician or person charged with the responsibility of identifying the reptile.

While it is not always possible to identify the snake responsible for the bite by the tooth or fang marks found on the victim's skin, in some cases these may be of considerable value in differentiating between bites by venomous and nonvenomous species. Bites by the vipers (Old World vipers, pit vipers of A sia, eastern Europe, and the rattlesnakes and related species of the Americas) usually result in one or two relatively large puncture wounds of varying depth, depending on the size of the snake, the force of its strike, and other factors. In most cases, additional tooth marks are not seen. Bites by the elapid snakes (cobras, mambas, tiger suake, taipan, coral suakes and related species) usually produce one or two small puncture wounds, although occasionally there may be one or two additional punctures. Sea snake bites are characterized by multiple (2 to 20) pinhead-sized puncture wounds. In some cases the teeth may be broken off and remain in the wound.

Proper identification of fang or tooth marks may be complicated in those cases where skin tears result from jerking an extremity away during the biting act. This is a particular problem in riper bites where long scratches or even lacera-
tions are inflicted by the fangs. In bites by elapid smakes there may be superficial scratches from the snake's mandibular and palatine teeth. Thus, it can be seen that while fang or tooth patterns may be of assistance in determining the identity of an offending snake, they shouk not be depended upon as the deciding factor in estab)lishing the diagnosis.

It should be noted that one cun be bitten by a renomous snake and not be poisoned. In : to 40 per cent of the bites inflicted by venomous stakes, no signs or symptoms of poisoning develop. This may be due to the fact that the snake does not always eject venom or, if venom is ejected, that it does not enter the wound, as can sometimes happen in very superficial bites. This important fact should always be considered before specific treatment is started.

Venom Apparatus

The venom apparatus of a smake consists of a gland, a duct, and one or more fangs located on each side the the head (fig. 1). The size of these structures depends on the size and species of the snake. Each renom gland is invested in a connective tissue sheath which is inraded by the muscles that contract it during discharge of the venom. The innervation of these muscles is different from that controlling the biting mechanisms; thus, the snake can control the amount of venom it ejects. It can discharge venom from either fang, from both, or from neither. Snakes rarely eject the full contents of their glands.

Most rattlesnakes probably discharge between 25 and 75 percent of their venom when they bite
a human. The true vipers discharge about the same, perhaps slightly less. There appears to be a greater variation in the amount an elapid may discharge. Many victims of elapid venom poisoning have minimal signs and symptoms; others show evidence of severe poisoning.

The fangs of the vipers are two elongated, canaliculated teeth of the maxillary bones. These bones can be rotated so that the fangs can be moved from their resting positions against the upper jaw, to their biting positions, approximately perpendicular to the upper jaw. These snakes have full control over their fangs, raising or lowering them at will as when striking, biting, or yawning. The two functional fangs are shed periodically and are replaced by the first reserve fangs. The fangs of the elapid snakes are two enlarged anterior maxillary teeth. These teeth are hollow and are fixed in an erect position.

Snake Venoms

The venom of most snakes is a complex mix-

A

B
ture, chiefly proteins, many of which have enzymatic activity. Some of the effects of suake venoms are due to the nonenzymatic protein portions of the tenom, while others are due to the enzymes and enzymatic combinations. The symptoms and signs of snake venom poisoning may be complicated by the release of several substances from the victim's own tissues. 'These autopharmacologic substances sometimes render diagnosis and treatment more diflicult.

The arbitrary division of venoms into such groups as neurotoxins, hemotoxins, and cardiotoxins, while having some useful purpose in classification, has led to much misunderstanding and a number of errors in treatment. It has lecome increasingly apparent that these divisions are over-simplified and misleading. Newrotoxins can, and often do, have cardiotoxic or hemotoxic activity, or both; cardiotoxins may have neurotoxic or hemotoxic activity, or both; and hemotoxins may have the other activities. It is best to consider all snake renoms capable of producing several changes, sometimes concomitantly, in one

Figure 1.-Figures of fangs, renom ducts, and venom glands of: A. Cobra (Elapidae), and B. Viper (Viperidae). The fangs of elapid snakes are much shorter than those of vipers and do not rotate. In each case the venom glands lie ontside the main jaw muscles toward the back of the head. The renom ducts lead from the glands to the bases of the hollow fangs.

TABLE I YIELD AND LETHALITY OF VENOMS OF IMPORTANT POISONOUS SNAKES

So.the		Approximate yicld, dry verom (my.)	Intraperi tone:al (.1) (mg./kg.)	Ineravenous (1.) ($\mathrm{mg} . / \mathrm{kg}_{\mathrm{s}}$)
Eneth Amberlat				
	3:3-6: 5	$370-720$	1.4.9	1.15*
Wostern dinmemblack (C, atrox)	30-6i.:	175-32.5	3.71	4.20
'fimber (e. horridus horridus)	: 3 - 51	9) ${ }^{\text {a }} \mathbf{- 1 5 0}$	$\underline{9.91}$	2.6 .3
gralrie (0. viridis virillis)	:32-16i	$2 .-100$:2:	1.61
Great lsasin (6 : R. lutosus)	:32-14i	75-150	2.80	\cdots
sonthern Pacitie (C, r. helleri)	$30-18$	75-160	1.60	1.2.9
leed diamond (e. ruber ruber)	30-5\%	12.-100	(6,6:)	8.80
MoJave (C. scrutulatus)	$23-10$	$50-90$	0.23	0.21
shlewinder (\%. cerastes)	18-30	18-10	4.00	-
13. Moceasins (Al)kistrodon)				
Cottommouth (.1. piscirorus)	30-50	90-1.48	5. 11	4.00
Copperlead (A. contortrix)	$24-36$	40-72	10.50	10.51
Cantil (A. bilincatus)	30-12	50-9\%)	-	2.10
C. Coral snakes (Micrurus) Eastern coral snake (M. fulvius)	16-28	2-6	0.97	-
Central and South America				
Cascabel (C. durissus terrificus)	$20-18$	20-40	0.30	-
13. American lance-headed vipers (Bothrops) Barba amarilla (1 . atrox)	46-80	70-160	3.80	4.27
C. IBushmaster (Lachesis mutus)	70-110	280-450	5.93	-
Asiat				
A. Cobras (Naja) Asian cobra (N. naja)	45-65	170-325	0.10	0.40
B. Kraits (Bungarus) Indian krait (13. cacruleus)	36-48	8-20	-	0.09
C. Vipers (Vipera) Russell's viper (V. russelii)	40-50	130-250	-	0.08
D. Pit vipers (Agkistrodon) Malayan pit viper (A. rhodostoma)	25-35	40-60	-	6.20
Africa				
A. Vipers				-
Puft adder (Bitis arictans) Saw-scaled viper (Echis carinatus)	$\begin{aligned} & 30-48 \\ & 16-22 \end{aligned}$	$20-35$	$\stackrel{3.68}{-}$	$\underline{2.30}$
B. Mambas (Dendroaspis) Eastern green mamba (D. angusticeps)	50-72	60-95	-	0.45
Anstralia A. Tiger snake (Notcchis scutatus)	30-56	30-70	0.04	-
Europe				
A. Vipers Euronean riper (Vipera berus)	18-24	6-18	0.80	0.55
Indo-Pacific				
A. Sea snakes Beaked sea suake (Enhydrina schistosa)	30-48	7-20	-	0.01

or more of the organ systems of the borly.
It is also apparent that quantitative and, perhaps, qualitative differences in the chemistry of venoms may occur at the species level and may, in fact, be evident in snakes of the same species taken from different geographic areas. Thus, differences in the symptoms and signs of poisoning may occur even when similar snakes are involved in a series of accidents.

In Table 1 are given the names of some of the more important renomous snakes of the world, their adult average lengths, the approximate amount of dried venom contained within their venom glands (adult specimens), and the intraperitoneal and intravenous LD_{50} in mice, as expressed in milligrams of venom (on a dry weight basis) per kilogram of test animal body weight. The purpose of this table is to demonstrate the considerable differences that exist in the lethality of various smake venoms.

In general, the renoms of the vipers cause deleterious changes in the tissues both at the site of the bite and in its proximity, changes in the red blood cells, defects in coagulation, injury to the blood vessels; and, to a lesser extent, damage to the heart muscle, kidneys, and lungs. 'The venom of the tropical rattlesnake, Crotalus durissus, causes more severe changes in nerve conduction and neuromuscular transmission than do other crotalid renoms. The renoms of the elapid suakes cause lesser local tissne changes, but often cause serious alterations in sensory and motor function as well as cardiac and respixatory difliculties.

SYMPTOMS AND SIGNS

'The symptoms, signs, and the gravity of smake venom poisoning are dependent upon a number of factors: the age and size of the victim, the nature, location, depth, and number of hites, the length of time the snake holds on, the extent of anger or fear that motivates the snake to strike, the amount of venom injected, the species and size of the snake involved, the condition of its fangs and venom glands, the rictim's sensitivity to the renom, the pathogens present in the snakes mouth, and the degree and kind of first aid and subsequent medical care. It can be seen that
smakebites may rary in severity from trivial to extremely grave.

The findings given in tables 2,8, and t are those observed in what may be termed typical, moderately severe cases of shake renom poisoning. While they are not complete, they do provide a ready reference of the more commonly observed sequelae of hites by renomons smakes.

Diagnosis of crotalid envenomation is dependent upon the presence of one or more fang marks, and immediate and usually progressive swelling, edema, and pain. In most cases swelling and edema are constant findings and are usually seen about the injured area within 10 minutes of the bite. In the absence of treatment, the swelling progresses rapidly and may involve the entire injured extremity within one hour. Generally, however, swelling and edema spread more slowly, and usually over a period of 8 to of hours. Swelling and edema are most marked following bites hy the North American ratlesmakes (excluding the Mojave, massasangas, and pigmy rattlesnakes) and the Imerican lanceheaded vipers (Iothropss). Swelling is slightly less marked following bites ly the Malayan pit viper (Aglistrodon thodostoma) and related species, the Asian lance-headed vipers (Thimeres(rms.s), and the Imerican moceasins (Aglistrodon). It is least acute following bites by the cascabel (Crotalus durissus terrificus).

In many cases, discoloration of the skin and echymosis appear in the area of the bite within several hours. The skin appears tense and shiny. Vesicles may form within 3 hours, and are generally present by the end of ot hours. Hemorrhagic vesiculations and petechiae are common.

Pain immediately following the bite is a common complaint in most cases of crotalid poisoning. It is most severe following bites by the South American pit vipers (except for the caseabel, which is less severe) : the eastem diamondback, western diamondback, and timber rattlesmakes of North America, and the Asian lancehearded vipers.

Weakness, sweating, faintness, and nausea are commonly reported. Regional lymph nodes may be enlarged, painful, and tender. A very common complaint following bites by some rattlesnakes, and one sometimes reported following other pit viper bites, is tingling or numbness orer
TABLE 2.-SYMPTOMS AND SIGNS OF CROTALID BITES

Symptoms and Signs ${ }^{\text {I }}$	North American Rattlesnakes (Crotalus)	Central and South American Ratcternakes (Crotalus)	North American Moccasins (Agkussrodon)	American Lance headed Vipers (Bopherops)		$\begin{gathered} 3 y_{3} 1392 n \\ 13 \end{gathered}$
Swelling and edema	$++{ }^{5}$	+	+ +	+ +	---	-.
P'ain_-----	++	+	$+$	+1+	\cdots	-
Discoloration of skin_	$++$	$+$	$+$	$t+$	\cdots	\cdots
Vesicles_-	+ +		$+$	++	--	-1
Ecchymosis	++	$+$	++	$+++$	--.	-..
Superficial thrombosis_	++		-	+ +	-	-
Necrosis_	++		+	+t+	$+$	-
Sloughing of tissue	++		-	+1	$+$	-
Weakness_	++	+ +	$+$	+ +	+	-.
Thirst_	$++$	++	+	+	+	\%-
Nausea or vomiting or both	$+$	+	+	$+$	-	-
Diarrhea_--	$+$	++	-	+	$+$	-
Weak pulse and changes in rat	+1+	$++$	+	+i+	+	-
Hypotension or shock_--	+1+	+	$+$	$+1+$	+	--
Sphering or destruction of red blood cells	+t+	-	-	++	-	-
Increased bleeding time	++	+	-	++	$+$	$+$
Increased clotting time	+++	$+$	-	$++$	$+$	$+4$
Hemorrhage ${ }^{\text {2 }}$	+++	-	+	+++	$+$	-
Anemia_	+ +	-	-	+	+	-
Blood platelet changes ${ }^{3}$	+	-	-	++	$+$	-
Glycosuria	$+$	-	+	++	-	-
Proteinuria_	+	$+$	+	$+$	$+$	-
Tingling or numbness ${ }^{4}$	$+$	$t++$	$+$	+ +	+	-
Fasiculations	$+$	+	-	$+$	-	-
Muscular weakness or paralys	$+$	$++$	-	$+$	-	-
Ptosis_-----	$+$	++	-	$+$	-	-
Blurring of vision_	$+$	+++	-	$+$	-	-
Respiratory distress	+ +	+++	$+$	$t+$	-	-
Swelling regional lymph nodes	$+$	$+$	$+$	++	$+$	-
Abnormal ECG	$+$	++	-	$+$	\div	\cdots
Coma	$+$	++	-	+	$+$	$+$

 ally confined to the locus of the wound. Bleeding from the gums is common following Bothrops envenomation. ${ }^{\text {a }}$ Platelets may be increased in mild poisonings and markedly decreased in severe cases.
Often confined to the tongue and mouth, but may involve the scalp and distal parts of the toes and fingers as well as the injured fort.
$\boldsymbol{6}(+$ to +++$)=$ Grading of severity of symptom, sign or finding, $(-)=$ of lesser significance or absent, ()$=$ Informatlon lacking.
TABLE 3.-SYMPTOMS AND SIGNS OF VIPERID BITES

Symptoms and Signs	Russell's Viper (Vipera russelii)	Saw-Scaled Viper (Echis carinatus)	Levantine Viper (Viperalebetina) and relared species	European Viper (Vipera berus)	Puff Adder (Bitis arietans)
Swelling and edema_-	H+	+1+	$++$	++	+t
Pain_	+t+	++ +	+ +	++	$+++$
Discoloration of skin	+1	+ +	++	$+$	+1
Weakness-	+	+	+	+	$+$
Nausea or vomiting or both.	+	$+$	++1	++	$t+$
Abdominal pain_	+	+	+ +	$+$	+ +
Diarrhea	$++$	$+$	$++$	$+$	$+$
Thirst	+	+1+	$+$	++	$+$
Chills or fever	+	$+$	$++$	-	$+$
Swelling regional lymph nodes	$+$	+	++	$++$	++
Facial edema	$+$	-	++	+	$+$
Dilatation of pupils	+	$+$	$+$	$+$	$+$
Weak pulse and changes in rate	$++$	$+$	+	$+$	+
Albuminuria_	$+$	$+$	++	-	-
Proteimuria	+t	+ +	$++$	-	-
Hypotension	$+1$	+	++	+	+ +
Shock	++	$+$	++	$+$	+ +
Hemorrlage ${ }^{\text {3 }}$	+	+ +	$+$	$+$	$++$
Anemia	++	+	$+$	-	-
Vesicles	+	$+$	+	$+$	++
Ecchymosis_	+	+	+ +	$+$	+ +
Necrosis	$+$	$+$	$+$	-	$++$
Decreased platelets	$+$	$+$	$+$	-	$+$
rrolonged clotting time_-------	+1+	+1+	$+$	-	$+$

 s:lw nc:lad vipur and lussell's siper envenomations.
TABLE 4.-SYMPTOMS AND SIGNS OF ELAPID BITES

Symptoms and Signs	$\begin{aligned} & \text { Cobras } \\ & \text { (Naja) } \end{aligned}$	$\begin{gathered} \text { Kraits } \\ \text { (Bhongarus) } \end{gathered}$	$\begin{gathered} \text { Mambas } \\ \text { (Dendroaspis) } \end{gathered}$	Taipan 	(мі"стинus)
Pain_	+ +	$+$	+	+	-4
Localized edema_	$+$	-	-	-	-
Drowsiness, weakness_	+1	$+1$	$+$	$+1$	-4.en
Feeling of thickened tongue and throat, slurring of speech, difficulty in swallowing \qquad	$t+$	+1	$t+t$	$\rightarrow+$	\rightarrow -
Itosis_	$++$	$++$	+ +	$\rightarrow+$ +	$\rightarrow-$
Changes in respiration	+	$+1+$	$\pm+$	+1	$\rightarrow-$
Headache_	$+$	$+$	$++$	++-	${ }^{-}-$
Blurring of vision_	$+$	++	$+t+$	+ +	- -
Weak pulse and changes in rat	++	+	$++$	+	+
Hypotension_	++	++	++	$+$	\rightarrow
Excessive salivation	$++$	+	+++	$+$	$\rightarrow-$
Nausea and vomiting	+	++	+++	$\therefore+$	+
Abdominal pain.	$+$	+++	+++	$++$	+
Pain in regional lymph nodes	$+$	++	+++	$+++$	$+$
Localized discoloration of skin	$+$	-	-	-	-
Localized resicles	$+$	-	-	-	-
Localized necrosis_	$+$	-	-	-	-
Muscle weakuess, paresis or paralysi	++	++	++	$+++$	-
Muscle fasiculations_	$+$	+	$+$	\div	-
Numbness of affected area_	++	+1+	$+$	$+$	$\rightarrow+$
Shock-	++	+1	++	\pm	-
Convulsions	+	$+$	-	-	-

the tongue and mouth or scalp. Paresthesia about the wound is sometimes reportecl.

Viperid renom poisoning is characterized by burning pain of rapid onset, swelling and edema, and patchy skin discoloration and ecchymosis in the area of the bite. Extravasation of blood from the wound site is common in Russell's and saw-scaled viper envenomations. The failure of the blood to clot is a valuable diagnostic finding. Bleeding from the gums, and the intestinal and urinary tracts is common in severe Russell's and saw-scaled viper bites.

Cobra envenomation is characterized by pain usually within 10 minutes of the bite, and this is followed by localized swelling of slow onset, drowsiness, weakness, excessive salivation, and paresis of the facial muscles, lips, tongue, and larynx. The pulse is often weak, blood pressure is reduced, respirations are labored, and there may be generalized muscular weakness or paralysis. Ptosis, blurring of vision, and headache may be present. Contrary to popular opinion, necrosis is not an uncommon consequence of cobra venom poisoning. In bites by the kraits a similar clinical picture is usually seen, except that there is very little or no local swelling or severe pain. The systemic manifestations may often be more severe, and shock, marked respiratory depression and coma, may rapidly develop. Abdominal pain is often intense following poisoning by the kraits, mambas, and taipans. Envenomation by coral snakes may resemble krait venom poisoning. 'The bite is usually less painful, and there is occasionally a sensation of numbness about the wound. Chest pain, particularly on inspiration, is sometimes reported. Localized edema is minimal and necrosis is rare.

Mamba renom poisoning is characterized by weakness, nausea and vomiting, blurred vision, slurred speech, excessive salivation, headache, and abdominal pain. These findings are often followed by hypotension, respiratory distress, and shock.

Envenomation by most of the AustralianPapuan elapids produces drowsiness, visual disturbances, ptosis, nausea and romiting, headache, abdominal pain, slurring of speech, respiratory distress, and generalized muscular meakness or paralysis. Hemoglobinuria may be found early in the course of the poisoning.

Sea suake renom poisoning is usually characterized by multiple pinhead-sized puncture wounds, little or no localized pain, oftentimes tenderness and some pain in the skeletal muscles and, in particular, the larger muscle masses and the neck. This pain is increased wyith motion. The tongue feels thick and its motion may be restricted. There may be paresthesia about the mouth. Sweating and thirst are common complaints, and the patient may complain of pain on swallowing. Trismus, extraocular weakness or paralysis, dilatation of the pupils, ptosis and generalized weakness may be present. Respiratory distress is common in severe cases. Myoglobinuria is diagnostic.

Little is known about the problem of envenomation by rear-fanged colubrid smakes. The Ifrican boomslang and bird snake are known to produce severe poisoning, which on rare occasions may be fatal. (These snakes are described on pp. 90-91.) Other species of colubrids, some with enlarged grooved fangs and some with solid teeth, are known to bite and may be venomous. The manifestations of poisoning by known venomous colubrids, such as the mangrove smake (Foigu dembrophill) of southeast Ssia, the West Indian racers (Alsophis), the "culebra de cola corta" (T'uchymensis permiana) of western South America, the parrot smakes (Leptophis) of tropical America and several other species are local pain and swelling, sometimes accompanied by localized skin discoloration and ecchymosis: and in the more severe ememomations, increased swelling and edema which may involve the entire injured extremity, general malaise and fever. The acute period of the poisoning may persist for 4 to 7 days. It is important to differentiate envenomation by colubrids from that by the more dangerous elapids and vipers.

In summary, any snakebite associated with immediate (and sometimes intense) pain, and followed within several minutes by the appearance of swelling and subsequently edema is usually diagnostic of snake renom poisoning by a riper. Elapid envenomation, on the other hand, is not so easily diagnosed during the first 10 minutes following the bite. Pain, usually of minor intensity, may appear within the first 10 minutes, although in some cases it is not reported for 30 minutes or even longer. Swelling usually appears 2 or 3
honns followinge the bite and tands to be limitad to the ate: of the womed. The liest systemio sigen of coppod remom prosembing is usatly drowsiness. This is often apparent within 2 homes of the bite. l'onis. burviner of vision, and dillienlties in deent and swallowing may also appeare within several homs of the bite. It can be seen hon
important it is in rohat, mamba, kait, tapan, tiacer, amd comal smake bites for detmmine the identity of the offending reptile as gutickly as possible. A difference of 30 minutes to 1 how in mitiating treatment in elapid remom poisoning may make the difference between life and death.

REFERENCES

 in Paphat and Its Treatment with 'racheotomy, Artificial Respiration and Antivenene. Trams. R. Soc. 'Trop. Med. Hyg. 58: 203-273. CILRISTENSEN, 1. 1. 1955. South African shake Venoms and Antivenoms. South Ifrican Institute Medical Research, Johannesburg, $1+2 \mathrm{p}$.
EFRATI, P. and REIF, L. 1953. Clinical and Pathological Observation on Sixty-five Cases of Viper Bite in Isracl. Amer. J. Trop. Med. Hy玉. 2: 1085-1108.
GENALRO, J. F., Jr. 1963. Observations on the 'lreatment of Snakebite in North America, p. 427-446. In, H. I. Keegan and W. V. Macfarlane, Venomous and Poisonous Animals and Noxious Plants of the Pacific Regrion. Pergamon, Oxford.
HEATWOLE, H. and BANUCHI, I. B. 1966. Envenomation by the Colubrid Snake, Alsophis portoricensis. Herpetologica 22:132$13+$.
KAISER, E. and MICHL, M. 1958. Die Biochemie der Tierischen Gifte. F. Deuticke, Wien, 258 p .
KLAUBER, L. M. 1956. Rattlesnakes, Their Habits, Life Histories, and Influence on Mankind. University California Press, Berkeley. 2 vol.

MOLE, R. IF. and EVERARD, A. 1947. Snakebite by lichis carinatu. Quart. J. Med. 16: 291-30:3.
READ, II. A. 1961. Myoglobimmia and Sea-snake-bite Poisoning. Brit. Med. J. 1:12811289.

REID, II. A., THEAN, P. C., CHAN, K. E. and BAHARAM, A. R. 1963. Clinical Effects of Bites by Malayan Viper (Ancistrodon thodostomer). Lancet 1:617-621.
RUSSELLL, F. E. 19te. Snake Venom Poisoning, vol II, P. 197-210. In, G. M. Piersol, (yclopedia of Medicine, Surgery and the Specialties. F. A. Davis, Philadelphia.
SAWAI, Y., MAKINO, M., TATENO, I., OKONOGI, T. and MI'TSULLSHI, S. 1962. Studies on the Improvement of Treatment of Habu Snake (Trimeresumes flavoviridis) Bite. 3. Clinical Analysis and Medical Treatment of Habu Snake Bite on the Amami Islands. Jap. .J. Exp. Med. 32: 17-138.
SCHENONE, II. and REYES, H. 1965. Animales ponzonosos de Chile. Bol. Chileno de Parasitol. 20: 10t-108.
WMIKER, C. W. 1945. Notes on Adder-bite (England and Wales). Brit. Med. J. 2:1314.

Chapter IV

FIRST AID

INTRODUCTION

Poisoning from snake renom is a medical emergency which requires immediate attention and the exercise of considerable judgment. Delayed or inadequate treatment for venomous snakebite may have tragic consequences. On the other hand, failure to differentiate between bites of renomous and nonvenomous snakes may lead to use of measures which bring not only discomfort to the individual but may produce deleterious results. It is essential that the one responsible for treatment establish whether or not envenomaiton has occurred before treatment is started. As was pointed out in Chapter III, a renomons shake may bite and not inject renom. Also, some persons litten by nonvenomous snakes become excited and even hysterical. These emotions may give rise to disorientation, faintness, dizziness. rapid respiration or hyperventilation, rapid pulse, and even primary shock-all sympoms and signs which may occur following envenomation. The hospital corpsman should keep this syndrome in mind when called upon to treat a person bitten by an midentified smake.

Most cases of snake renom poisoning in Nary and Marine Corps personnel have occurred in the presence of other service personnel. In most instances hospital corpsmen have been able to render the necessary initial first aid measures. Howerer, in an occasional case no medically trained person may be available or the victim may be alone. As the success or failure of treatment may depend on when first aid is started. this chapter has been prepared to acquaint all Nary and Marine Corps persomel with the problem of snake renom poisoning and the first aid measures that need to be carried out in the event
that poisoning occurs distant from a hospital. doctor, or medical corpsman.

GENERAL CONSIDERATIONS

Treatment, to be effective, must be instituted immediately following the bite and must inclucle measures:

1. To retard absorption of the renom:
2. 'To remove as much venom as possible from the wound:
3. 'To neutralize the venom:
4. To prevent or reduce the effects of the renom: and
5. 'To prevent complications, including secondary infection.
If a victim of snakebite finds himself alone, a number of factors must be considered. He will need to determine whether or not the snake is renomous and, if renomous, the severity of the poisoning. He will need to consider how long it may be before help will reach him. Or, perhaps, he will need to weigh the advantages of walking to the nearest friendly troop facility, hospital, or town. If he decides to move he will need to determine how fast and for how long a period he may walk. These and other variables make it difticult to give consistent advice on what to do under such circumstances. Wach case must be considered separately. The victim should give careful thought to all of these matters before making a decision as to the wisest procedure to follow. He should remember not to panic and not to orerly exert himself. He should make every effort possible to obtain assistance, without jeopardizing his mission.

With these things in mind the following considerations should be followed, in so far as pos-
$\because \quad 1$ antcome of cach case is dependont, mong wher himg, "pon the kind of treatment usent and the epeed with which it is intiated. Shove all. tho victim should remember to keep and comsider each move thoronghly.

STEP ONE

Apply a Constriction-band or a Tourniquet.-In cases of envenomation by most crotalids, a constrictionband should be placed above the first joint proximal, or \because to 4 inches proximal to the bite, whichever is appropriate (see fig. 22). It should be applied tight enough to occlude the superficial renous and lymphatic return but not arterial How. It should be released for 90 seconds every 10 minutes. The constriction-band can be moved in advance of the progressive swelling. It should be removed as soon as antivenin has been started. In no case of viper venom poisoning should a constriction-hand be used for more than 4 hours. It is probably of little value if applied later than so minates following the bite.

Figitre 2.-correct placement of a tourniquet. It should be tight enough to imperle the flow of lymph and blood in the superticial vessels, but not that of blood in the deener vessels.

Following encenomation by elapids, constric-tion-bands or toumiquets are of questionable value. However, in cases of severe envenomation by cobras, kraits, mambas, tiger snakes, death adders or taipans, a tight tourniquet should be applied immediately proximal to the bite and left. in place until antivenin is given. It should be
reloased for 90 seronds every 10 mimutes, and shond not be used for mome than 8 hours.

STEP TWO

Capture the Snake and Kill It.-Most smakes will remain in the immediate area of the aceident and can bo found without too much dilliculty. If several persons are present, send one or two in search of the snake while the others are arministering first aid to the victim. Exercise extreme caution in hunting for the offending snake. A reptile that has bitten once is just as likely to bitc again as not. The smake can be killed by a sharp blow on the neck. (An undamaged head is a great aid to identification). Do not handle the snake. If it cannot be positively identified at the scene of the accident, carry it on a stick or in a cloth bag to the command post or hospital.

STEP THREE

Lie Down.-Remain at rest until the offending snake has been identified (see Chapters VI, VII, and VIII). If the snake is nonvenomous, clean and dress the wound and proceed with your mission. Report to a medical officer as soon as possible.

If the snake is identified as venomous, or if its identity cannot be determined, begin treatment as outlined below:

STEP FOUR

Unidentified Snake.-Tmmobilize the injured part (see below) then turn to page 16 for instructions.
Identified Venomous Snake.-Immobilize the injured part. This can be done by splinting as for a broken arm or leg. The immobilized part should then be kept below the level of the heart, but not in a completely dependent position. If the wound is on the body, keep the victim in a sitting or lying position, depending on the location of the bite. The patient should always be kept warm. He should not be allowed to walk. He should not be given alcohol. He may, however, be given water, coffee, or tea. Any manifestations of fear or excitement should be alleviated by reassurance.

STEP FIVE

Make Incision and Apply Suction.-Incision and suction are of definite value when applied immedi-
ately following bites by vipers, particularly pit vipers of North America. They are of lesser value following bites by the South American vipers and Asiatic vipers, and probably of little value following envenomation by elapids and sea snakes (see discussion of first aid measures, p. 17).

In viper bites, excluding those by small European ripers and small North American copperheads, make cross-shaped or longitudinal incisions $1 / 8$ to $1 / 4$ inches long through the fang marks (fig. 3), except in those cases where there is an abnormal amount of bleeding. The incisions should be made as deep as the fang penetration. The direction of the animal's strike and the curvature of the fang should be borne in mind when determining the plane of incision. Suction should then be applied and continued for the first hour following the bite. 'To be effective, suction must be applied within the first few minutes following the biting. It is of little value if delayed for 30 minutes or more. Oral suction should not be used if other means of suction are available. Multiple incisions over the involved extremity or in advance of progressive edema are not advised.

Figure 3.-Incised fang marks of a viper. Note how small the incisions through the wounds need to be. Photo by Findlay E. Russell.

STEP SIX

Administer Antivenin.-It is recommended that medical corpsmen, in the absence of a physician
and after suitable training, be given permission to conduct sensitivity tests and to administer appropriate antivenin to rictims of snake renom poisoning. This might be done in those cases where severe signs and symptoms develop early in the course of the illness, or where 4 hours or more following viper venom poisoning or 2 hours or more following elapid renom poisoning can be expected to elapse before professional care will be available.

In such cases, following appropriate skin or eye tests (see Sensitivity 'Tests, page 16), the antivenin should be given intramuscularly at a site distant from the wound. Antivenin should nerer be infected into a finger or toe, and it should be administered intravenously only by qualified persomel. As the amount of antivenin available in the field is limited, one unit (vial or package) will probably be all that is available for a corpsman to give. The earlier this is injected, the better the results. However, several units may be needed for full nentralization of the venom.

NOTE: If the victim is in shock the antivenin will be absorbed slowly from an intramuscular site.

No Antivenin Available.-If antivenin is not available or if no qualified person is present to administer it, then proceed with STEP SEVEN.

STEP SEVEN

Transport Victim to Doctor, Aid Station or Hospital.This should be done by litter, if at all possible; if not, try to provide some other means of transportation. Do not let the victim walk if this can be avoided. Keep the victim warm, and the bitten part in a dependent position.

STEP EIGHT

Institute Supportive Measures.-Should any of the following sequelae to the bite develop during evacuation of the rictim, consider these measures: Shock:

1. Place victim in recumbent or shock position (lying down on his back, head slightly lower than his feet.).
2. Maintain an adequate airway.
3. Keep victim comfortably warm.
4. Control any severe pain. This can usually be done with salicylates or codeine. Do not give
mophine to ath matonacions victim on one in respiatory distress.
\therefore Alay apmehension by reassuring words and : $\mathrm{H}=110 \mathrm{l}$
(i. Replates amt maintain adergate blood volume with saline, plasma, plasma expanders, or whole blowl. (Items 6,7 , and 5 are recommended for we by mentioal olficers or paramedical perzonnel with appopriate qualifications).
5. (ive vasopressor drugs if condition warrants.
A. (iivo oxygen.

Respimetory Mistress:

1. Clear airway.

2 Apply artificial respiration. As long as the patient's heart continnes to beat, he has a chance to recover, and this may ocour even after many hours of artificial respiration. Mouth-to-mouth breathing in rhythm is the method of choice in all cases of respinatory failure. IIowever, when it cannot be applied, the rhythmic push-pull methods are wenerally eftective. If a mechanical restuscitator is available, it also may be used by anyone qualified in its operation.
3. Respiratory stimulants are limited to use byy a medical officer.

T'omiting:
Vomiting freçuently occurs following certain types of smake renom poisoning. Precautions should be taken to see that the patient does not aspirate vomitus. Place him in a prone position, head slightly lowered and tumed to one side.

Excessive Salivation:

Place head in a position to permit adequate drainage of saliva as described under Vomiting, above. Keep airway clear. Atropine or parasympatholytic drugs may be administered only by a medical officer.

Convulsions:
No treatment should be given during the attack except that which will prevent the patient from injuring himself.

STEP NINE

Disposition of Patient.- At the aid station or hospital, inform the doctor of the identity of the snake involved (if known) ; or, turn the dead, unidentified snake orer to the doctor. Give approximate time between bite and arrival and point out any constriction-band or tourniquet left
in place (ifse details on any antivenin or drugs given the patient. Report all mmsual signs and symptoms.

BITES BY UNIDENTIFIED SNAKES

Every attempt shoukd be made to capture and kill, or at least identify, the ollending snake. As a rule, smakes remain in the vicinity of the accident. A knowledge of the habits and habitats of the smakes peculian to the area (see (hapters VI, YII, and VIII) will assist in locating and identifying the snake. But. When the bite occurs at night, capture of the snake may not be possible, and management and treatment of the victim will depend upon the clinical signs and symptoms.

First, have the victim lie down and remain at complete rest. Immobilize the bitten part and keep it in a dependent position. In this position the onset of pain, if it occurs, will be more rapid, thus assisting in an early diagnosis. Do not apply "toumiquet or incise the xound. These measures may produce effects which could make diagnosis more difficult.

If no pain, swelling, edema, drowsiness, paresthesia, weakness, or paresis of the muscles of the face and throat appear within 30 minutes, the bite was probably inflicted by a nonvenomous snake. However, if at all possible, the victim should remain at rest and be observed for an additional 2 hours.

If symptoms or signs of renom poisoning develop during the observation period, the measures previously described under General Considerations, above, must be considered. The success of these measures will depend upon the time that has transpired between the bite, and their initiation. In those cases where the first aid measures have been deferred, the need for early administration of antivenin becomes urgent. In such cases, greater consideration should be given to the intravenous use of antivenin, obviously following the necessary sensitivity tests.

SENSITIVITY TESTS

A sensitivity test for horse serum must be carried out on all victims of snake renom poisoning
before horse sermm antivenin is administered. Directions for these tests will usually be found in the package containing the antivenin. In the absence of specific instructions follow these steps:

1. Inject 0.10 ml . of a $1: 10$ dilution of the horse serum or antivenin intracutaneously on the inner surface of the forearm. Use the specific hypodermic needle provided for the test. If one is not provided, use a short 27 -gauge needle. If the test is done correctly, a wheal will be raised at the site of the injection. The wheal is white at first but if the test is positive the area about the point of injection will become red within 10 to 15 minutes. If any local or systemic allergic manifestations (levelop within 20 minutes of the test, do not give antivenin. Leave this decision to the medical officer.

If the victim develops a severe reaction to the test (restlessness, flushing, sneczing, urticaria, swelling of the eyelids and lips, respiratory distress or cymosis), inject 0.3 to 0.5 ml . of $1: 1,000$ adrenalin subcutaneously, and observe the victim closely. Se prepared to administer artificial respiration. A cardiac stimulant may also be needed if slock develops.
2. In altemative to the skin test is the eye test. One or two drops of a $1: 10$ solution of the horse serum or antivenin are placed on the conjunctiva of one eye. If the test is positive, redness of the conjunctiva will develop within a few minutes. If the reaction is very severe, it should be controlled by depositing a drop or two of $1: 1,000$ adrenalin directly on the conjunctiva.
3. If a serum sensitivity test is positive, desensitization should be carried out before administering antivenin. This should be done only by a doctor. Do not attempt to desensitize a rictim unless the appropriate facilities and drugs are available.

DISCUSSION OF FIRST AID MEASURES

It is not a purpose of this manual to discuss or evaluate all of the first aid treatments that have been suggested or advised for snake venom poisoning. This has been done in the medical literature. The reader is referred to the references at the end of this chapter for a more thorough consideration of this subject. It should be noted here, however, that there is no single thera-
peutic standard of procedure for all cases of snake renom poisoning. Rest, immobilization of the injured part, and reassurance are indicated in every case, and in themselves are valuable therapeutic measures, but berond these, few measures can be recommended for all cases of snakebite. In the following sections some consideration will be given to several of the more commonly employed first aid measures.

CONSTRICTION-BAND AND TOURNIQUET

Constriction-bands and toumiquets have long been used in the treatment of snakehite. The rationale for their use is quite simple, that is, to refard the absorption and spread of the renom. Studies with North American rattlesmake venom labeled with radioactive iodine (\mathbf{I}^{131}) show that the spread of certain fractions of the renom can be retarded by pressure on the superficial lymphatic channels proximal to the deposition of the foxin. It appears that the greater portion of rattlesnake renom is alborbed directly into lymphatic structures. These studies support the clinical findings that in cases of North Imerican rattlesmake hites, a constriction-band, applied early and effectively, can retard the spread of the foxin and thus decrease the area of localized necrosis. There is also some evidence to indicate that the constriction-band retards the development of systemic signs and symptoms.

The use of a constriction-band or a tourniquet in cases where deep envenomation has occurred would appear to be of limited or no value, and indeed some clinical reports support this contention. On the other hand, the incorrect application of constriction-bands and tourniquets, parficularly in Sontheast Isia, makes it cliflicult to evaluate these measures solely from clinical experiences. It might be concluded that a properly applied constriction-band is of definite value in poisoning by all North American crotalids and many of the small ripers from throughout the world. It is probably of lesser or no value following bites by the large vipers outside North America. In spite of these findings and opinions, it seems adrisable in view of no substantial contraindication, to recommend the use of a constric-tion-band in all cases of viper venom poisoning during the period when suction is being carried out.

The veroms of the elapids ane considerably dif Grabt in thoir chemical structure from those of fhe vipers, and the structural variations within the venoms of the family blaphate are definitely moro complex than those within the lamilies (ro talidat and V̈peridat. Present knowledge indicates that, in genemal, elapid renoms aro absorbed in groater guantities through the bood vessels than through lymphat ic vessels.

Both experimental and clinical studies indicate that a constrietion-band is of questionable value followinge envenomation by an elapid. The value of a tight toumiquet is not so easily decided. The rationale for using a tight tommiquet to occlude both superficial and deep blood vessels is asily understood. However, it must be admitted that adequate supportive evidence is still lacking. Severtheless, it seems best to advise placing a tight tourniquet proximal to wounds inflicted by large cobras, kraits, mambas, tiger snakes, death adders, and taipans. Tourniquets should be left in place only until antivenin is injected. Under no circumstances should they be used for more than S hours, and never without the usual precautions associated with the use of a toumiquet.

INCISION AND SUCTION

Few problems in the first aid treatment of snake renom poisoning have elicited as much controversy as incision and suction. Recent experimental studies have shown that in the case of Crotalus envenomation, incision and suction at the fang puncture wounds instituted within several minutes of the bite, and suction continued for no less than 30 minutes, can remove a measurable portion of the renom. The exudate obtained from such incised wounds has been found to produce the typical fall in systemic arterial blood pressure, the increase in systemic venous and cisternal pressures, the changes in cardiac and respiratory rates, and the alterations in the electrocardiogram and electroencephalogram observed following injection of crude venom. The exudate has also been found to be lethal to mice in doses approaching that of the crude venom. Studies with I ${ }^{131}$-labeled C rotalus venom indicate that the toxin can be removed from properly incised wounds by suction. These various experimental studies strongly support the clinical im-
pressions of those physicians who have treated a sulfiefont mumber of rattlesnake bites to be in a position to evaluate this first ated measuro critically.

Contrary to somo opinion, few if any blood ressels, tendons, or other vital structures have been injured by properly executed cuts through fang marks of North American rattlesnakes. There is no foundation for the condemmation of this procedure on the basis that vital structures have been damaged during the execution of cuts. There is also no support for the contention that such trivial incisions will produce neural and glandular activities which, in tum, increase the lethal effect of the venom.

According to some clinicians, incision and suction through the fang wounds have not been found to be effective following the bites of vipers in Isia, Lfrica and parts of the Middle Last. While they are advised and used by some physicians in these areas, others do not recommend their use. Arlequately controlled studies on the depth of fang penetration by the Old World vipers have not been done, but clinical evidence would seem to indicate that these snakes bite deeper than their North American cousins. If this is true then incision and suction would be less effective than in North American crotalid bites. Where intramuscular enrenomation occurs, incision and suction are of no value and are not recommended.

The time of instigation and the manner in which incisions have been made following bites by vipers in Λ sia and Λ frica have been so inconsistent that it is quite impossible to determine, solely on the basis of clinical reports, whether or not these measures are useful as first-aid measures in poisonings by the Old World vipers. It seems best at this time to advise incision and suction in most calses of viper venom poisoning. In no case, however, should incisions be made deeper than the subcutaneous tissues, and in those cases where it is obvious that the fangs have penetrated muscle tissue, no incisions should be made.

Incision and suction throngh the fang marks produced by the elapid snakes have not been found useful. This may be because elapid renoms are absorbed more directly into the blood stream than into lymphatic chamels. It is not possible from the clinical reports on elapid bites
to determine whether or not the measures are useful, since the time of making the cuts and the duration of the suction are seldom recorded. Also, observations in Asia and Africa indicate that these procedures are seldom carried out in what one might assume to be an effective mamner. It would seem best to aroid using incision and suction for elapid renom poisoning until current experimental work on this problem has been completed, or until a critical evaluation of clinical cases has been made.

EXCISION

Excision of the bite area is a rather heroic measure which might be of value in some envenomations if it could be carried out within 2 or 3 minutes following the bite. It is a procedure carrying considerable risk. It might be considered in those cases where envenomation by a large krait, mamba, taipan, death adder, or tiger snake has occurred, and where the victim is alone and isolated, and likely to remain so for 6 or more hours. Under such conditions it might be wise to excise the wound or amputate the toe or finger. This has been done by some courageous persons.

OTHER MEASURES

According to Russell and Scharffenburg, some 217 "cures" for snake venom poisoning have been described in the literature. Some of the sugrested first aid measures are: injecting potassium permanganate, ammonia, vinegar or oil into the wound; wrapping the liver of the oflending snake or of a freshly-killed chicken over the wound; setting fire to the wound after applying gasoline; eating various plants or raw meat: applying mud packs to the wound; soaking the injured part in excrement; washing the wound with plant juices; drinking whiskey; taking antihistaminies, et cetera. These and the other socalled cures are little more than historical curiosities. Whatever the source, they are hazardous: first, because they often involve dangerous methods; second, because they delay the use of effective therapeutic procedures. They should not be used.

Snake venom poisoning is an accident highly variable in the gravity of its results. It is one in which the most fantastic remedy may gain its reputation among credulous people by having
"cured" a bite that required no treatment whatever. Avoid using any first aid measure that has not been evaluated; remember, most of the "cures" you will hear about have been evaluated and found to be useless.

REFERENCES

BUCKLE 1, E. and PORGES, N. 1956. Venoms. Amer. Issoc. Advancement Sci., Washington, D.C. 467%.

GENNARO, J. F., Jr. 1963. Observations on the Treatment of Snakebite in North America, p. 427-446. In, H. L. Keegan and W. V. Macfarlane. Venomons and Poisonous Animals and Noxious Plants of the Pacific Region. Pergamon, Oxford.
KAISER, Es. and MICII, M. 1958. Dio Biochemic der 'Tierischen Gifte. F'. Denticke, Wien, 2.58 p .
KELEGAN, H. L. and MACFARIsANE, W. Y. (editors) 19(6:3). Venomons and Poisonous Animals and Noxious Plants of the Pacific Region. Pergamon, Oxford. 456 p .
MERRLAM, 'T. W., Jr'. 1961. Current Concepts in the Management of Snakebite. Mil. Med. 126: 5206-5:31.
NATIONAL, ACADEMY OF SCHENCES, NATION.M RESE.ARCH COUNCII」 COMMITREE ON SNAKERITE THERAPY. 1963. Interim Statement on Snakebite Theralpy. 'Toxicon 1: S1-87.
PHISMLIX, M. 1922. Animaux Venimeux et Venins. Masson, Paris, 2 vol.
REID, H. A., THEAN, P. C., CILN, D. E. and B.MILR.M. A. R. 1963. Clinical Effects of bites by Malayan viper (Ancistrodon rhodostomme). Lancet 1:617-621.
RUSSELL, F. E. 1962. Snake Venom Poisoning, vol 11, p. 197-210. In, G. M. Piersol, Cyclopedia of Medicine, Surgery and the Specialties. F. A. Davis, Philadelphia.
RUSSELLL, F. E. and SCHLARFFENBERG, R. S. 196t. Snake Venoms and Venomous Snakes. Bjbliographic Associates, West (Covina, California. 220 p .

Chapter V

MEDICAL TREATMENT

GENERAL CONSIDERATIONS

On arrival at the aid station or hospital, an immediate evaluation must be mate of the pafient's queneral condition. Snake venom poisoning is always a medical emergency requiring immediate attention. A clelay in instituting medical treatment can lead to far more tragic consequences than one following an ordinary traumatic injury. In most cases, first aid measures will already have been instituted by the corpsman. The physician will need to evaluate these measures before determining the course of subsequent treatment. None of the first aid measures should be regarded as substitutes for antivenin, antibiotic and antitetanus agents; nor should they be instituted at the possible expense of delaying administration of the antivenin. Needless to say, the physician will have to establish in his own mind whether or not the patient has been poisoned and, if so, to determine which therapeutic measures he can use most effectively.

If the patient arrives at the medical installation one hour or more following the bite and no first aid measures have been initiated, the physician should put him to bed, immobilize the affected part, clean the wounds thoroughly, and proceed with the measures outlined below. Incision and suction, excision, et ceterf. are of no value after such a delay and should not be attempted.

Admission Procedures

A routine history and physical examination should be done. The identity of the offending snake, its size, the time of the bite, and the details of all first aid measures employed, including the time lapse for each, should be recorded. Inquiry
should be made concerning previous bites, allergies, and whether or not the patient has previously been exposed to horse serum. If a skin test has already been done this should be checked. Blood should be drawn for typing, cross-matching, blood clotting, and clot retraction studies. A complete blood count, hematocrit, and urine analysis are essential. Determinations of the sedimentation rate, prothrombin time, carbon dioxide combining power, urea nitrogen, sodium, potassium and chloride are advised, if within the limits of persomnel, time, and equipment. In severe poisonings, an electrocardiogram and a blood platelet count should be done. Serum bilirubin, red cell fragility tests, and renal function tests should be done if the condition warrants. Studies of the hematocrit, complete blood counts, and hemoglobin concentration should be carried out several times a day. Urinalyses should be done with particular attention being given to the presence or absence of red cells. This is especially important in all cases of viper venom poisoning.

In all patients, regardless of the snake involved, pulse, blood pressure, and respirations should be checked periodically. When available, central venous pressure monitoring devices may be used in order to determine need for and to evaluate response to anti-shock therapy. Facilities and drugs for shock must be readily arailable, and a tracheostomy set and positive pressure breathing apparatus should be held in readiness. A measurement of the circumference of the affected part 4 inches above the bite, and at an additional point proximal to the wound, should be recorded.

The course of smake venom poisoning is sometimes unpredictable, and patients showing steady recovery may on occasions take a turn for the worse. Continued close observation by physi-
cians and nurses is essential during the entire hospitalization period.

SPECIFIC THERAPY

Antivenin

The early administration of antivenin, particularly following a severe envenomation, cannot be overemphasized. A few minutes may mean the difference between life and death. The choice of antivenin, the route of injection and the amount to be given will depend upon a number of different factors (see below). In most cases, the more species or genus specific the antivenin, the more effective it will be. However, at the present time there is a great deal of variation in the effectiveness of the commercially available antivenins; some polyvalent types appear to be more useful than. some which are genus specific. Unfortunately, there is no standardized process for the production of antivenin, and indeed there is no conformity in testing methods. Thus, the physician will need to depend on the specific information supplied with the antivenin, or upon more detailed data provided by a medical facility in the area. Ampoules of antivenin usually have an "expiration date" indicated. Though this is the limit of the producer"s period of potency, the antivenin does not suddenly become inelfective on that date. Some producers have indicated that the effectiveness of the antivenin is not greatly impaired until it has become clondy or milky in appearance. I list of the avaibable antivenins is provided on pages 169-179.

Certain principles can, however, guide the physician in his choice of an antivenin. In general, the lyophilized preparation is to be preferred to the nonlyophilized one; and antivenins prepared by fractionation with ammonium sulfate, or some similar process for removing the low antibody containing fractions, are usually superior to those in which the whole serum is packaged. Almost all antivenins currently available are prepared in horses, but within the next few years some antivenins will be prepared from sera of other animals.

The amount of antivenin required to neutralize the effects of a venom will depend upon a number of different factors. However, some general in-
structions can be given. Following appropriate skin or eye tests, in cases of minimal envenomation, 1 or 2 units (vials, tubes or packages) will usually suffice. Some manufacturers, however, advise 3 or 4 units, eren in relatively minor cases. In moderately severe cases, 3 to 5 units may be required; while in severe cases, 10 or more units may sometimes be needed. While as many as 45 units (450 ml . of antivenin) have been given to a single patient, this is never warranted, and indeed is very dangerous.

The choice of the route of administration will depend, among the other factors previously noted. upon the amount of time that has transpired between the bite and the administration of the antivenin. 'The longer the delay the more urgent the need for intravenous antivenin. However, not all products can be given intravenously with the same degree of safety. The physician should consult the brochure which accompanies the antivenin before injecting the serum. Intravenous antirenin is also indicated for those patients in shock.

In most cases, a portion of the first unit should be injected subcutaneously proximal to the bite or surrounding the wound or in adrance of the swelling. I'nder no circumstances should antirenim be injected into a finger or toe. Aroid giving large amounts of the antivenin into the injured part, for this makes it difficult to determine how much swelling is due to the renom and how much is due to the presence of antivenin. I second portion of the antivenin should be injected intramuscularly into a large muscle mass distant from the womd. The last portion of the first unit should be given int a menously, if at all possible. It can be added to a physiologic saline solution and given in a continuous drip. subsequent doses can then be added to the saline solution.

Antivenin is of value in neutralizing certain effects of the renom, but perhaps not all. It is difficult to determine how long after envenomation antivenin can be given and still be effective. Certainly, it is of ralue if given within 4 hours of a bite: it is of lesser value if administration is delayed for 8 hours, and it is of questionable value after 10 hours, except perhaps in cases of poisoning by certain elapids. It seems advisable to recommend its use up to 12 hours following enrenomation, unless there is a definite contra-
indtationt. Following bites bey the Justathan chaphe it might be of salue even when given be yond 12 hours lollowing tho bite.
diministration of antivenin is not a procedure without dangere In sensitiva persons its injece fion caln hat fatal. In persons with a history of extensivo atlergies it must be injeeted with extreme cation, even in the presence of a negative skin test. Ipproximately so percent of one large eroup of Americans tested for horse serum sensitivity following rattlesmake bites had megative or only slighty positise reactions. Twenty percent of this group were subsequently treated for delayed serum reactions; reactions were most marked in those patients receiving ? vials or more of antivenin.

In patients sensitive to horse serum, desensitization should be carried out as indicated in the brochure accompanying the antivenin, or according to standard medical procedures for desensitization. In those patients having a history of sensitivity and a strongly positive skin or conjunctival test (3 or $4+$), antivenin should be withheld. However, the physician will need to weigh the risk of withholding the antivenin, against the risk of death, when poisoning has occurred by large mambas, kraits, cobras, or certain of the Australian elapids. (See p. 23 regrating use of corticosteroids.) Antivenin has been given to very sensitive patients in a slow drip of physiologic saline, but only in a hospital where systemic arterial and venous pressures and respirations could be continuously monitored, and where an electrocardiogram could be watched.

Blood Transfusions and Parenteral Fluids

All severe cases of snake renom poisoning give rise, early or late in the course of the disease, to a decrease in blood flow. The shock seen immediately following the severe bite by a rattlesuake is due to the pooling of blood in the pulmonary circulation, and to a lesser extent in the larger vessels of the thorax. In such cases, the availability of blood to the heart and brain is markedly reduced, and unless circulating blood volume is restored, the patient may develop irreversible tissue changes. When shock develops late (12 to 72 hours) in the course of the disease, it is usually due to blood loss through hemorrhage. The hemorrhage may be evident in the injured
part, or it may bo masked intmperitoneally or metmperitoneally, or it may ocem into the gas trointestimal, minary, of respisatory pacts. Pooling of bood in somo organs may also take place and add to the decrease in circulating volume. C'oncomitant with these changes, the red blood cells may undergo lysis and further embarrass the cireulation. 'To combat these effects, blood volume and blood flow must be maintained.

Parenteral fluid should always be given following a severe envenomation. It may be necessary to add a vasopressor drug to the solution. Avoid using corticosteroids, particularly if antivenin has or is being administered. While plasma or plasma expanders can be given, whole blood should be administered if it is available. In cases of crotalid and viperid renom poisoning, fresh blood is preferred, as the patient may be unable to produce or circulate platelets. If, and when, bleeding begins, the hematocrit may fall rapidly necessitating a number of transfusions. Exchange transfusions should be considered when the clotting time is at infinity and the blood picture displays no evidence of improvement. As many as 25 pints of blood may need to be given to the victim of a serere rattlesnake bite.

Antibiotics

A broad-spectrum antibiotic should be given if the reaction to envenomation is severe. Since the nature of the injury predisposes to infection, and since pathogenic bacteria are likely to be introduced into the wound, the use of an antibiotic seems justified. Should infection develop, cultures and organism sensitivity tests will guide subsequent antibiotic therapy. If there is extensive skin damage, large doses of an antibiotic may be needed. In such cases, repeated wound cultures and blood comots are advisable.

Tetanus Prophylaxis

Since the members of the armed services have been routinely immunized against tetanus, a "booster shot" of tetanus toxoid should be given upon admission. The use of gas gangrene antitoxin is not warranted.

Electrolyte Balance

Because of the acute changes associated with the tissue damage produced by the renom, and the loss of blood and intracellular fluid which may occur, changes in electrolyte and fluid balance should be treated immediately.

Analgesic

Aspirin or codeine may be used to alleviate pain. Morphine may be used if the pain is severe, but should be aroided in near shock conditions or when there is a respiratory deficit. Local "blocks" with procaine and topically applied lotions or ointments are rarely effective. The affected part should bo kept out of a completely dependent position so as not to accentuato pain.

Respiratory Failure

It the first signs of respiratory distress, oxygen should be given, and preparations made to apply intermittent positive pressure artificial respiration. A tracheostomy may be indicated, particularly if trismus, laryngeal spasm, and excessive salivation are present. While drugs have been given to stimulate the respiratory centers, they have not proved of particular value.

Renal Shutdown

The routine emergency measures for the treatment of renal shutdown should be followed. Shock, fluid restriction, electrolytic balance, diet. and administration of digitalis must be considered. Renal dialysis may be necessary. Peritoneal dialysis is of little value.

Sedation

Mild sedation with phenobarbital is definitely indicated in all severe bites, and where respiratory failure is not a problem. Sedation will usually reduce the amount of narcotic necessary to control the pain.

Care of the Wound

The wound should be cleansed and covered with a sterile dressing. The dressing should be changed frequently when large amounts of exu-
date are present. Every attempt should be made to keep the wound and dressing dry. Aroid fasciotomy. Only when circulation is seriously threatened should a fasciotomy be done.

Other Measures

1. Antihistamines are of no value during the acute stages of the poisoning. They can be used subsequently to control the lesser allergic manifestations provoked by the venom or horse serum.
2. Itropine can be used as a parasympatholytic drug.
3. Ammonir. injected into the wound, is contraindicated. The injection of potassium permanganate, formaldehyde, gold salts, et cetera, into the injured area, or elsewhere, is of no value and should not be attempted.
4. Corticosteroids are probably of little value during the acute stages of viper venom poisoning, and indeed their use may be contraindicated when antivenin is being administered. They might be used as a single dose treatment for shock, if no other specifie antishock drug is available. In elapid renom poisoning they appear to have found some widespread use, although the clinical evidence in support of their administration in this type of poisoning is not at present convincing. They might be used in elapid renom poisoning, but here again caution should be exercised if antivenin is to be given simultaneously.

The corticosteroids are the drugs of choice in combating any late or severe manifestations of the allergic response provoked by the renom or horse serum. In most cases these manifestations do not appear until 3 to 5 days following administration of antivenin.
5. Cryotherap?y should be avoided. Keeping the injured part cool ($40-50^{\circ} \mathrm{F}$.) for several days (and the patient warm) may be of some value, but freezing the extremity or keeping it immersed in ice water for days is not recommended.
6. EDTA (ethylenediaminetetracetic acid) has been suggested as an agent for combating the tissue effects produced by certain viper venom enzymes. Preliminary experimental studies have indicated that 0.025 to 0.05 molar EDTA in saline, when injected in the area of the injury, retards the development of necrosis and certain other tissue changes. There is no known contra-
matimation for it 1 -i in confuntion with anti 4tanil
 Hhrapentic measure, but has not been evaluated sulliodently to recommend its use at this time.
s. Iswlution-perfusion of an extremity with amfernin hats mot been evatuated sutbieiently to reonmment its nise at this time.

Follow-up Care
Often neglected but of the utmost importance,
is the follow-up care. Confmetures and maputafions can be reduced by initiating correctivo measures amb exereises following the acule stages of the poisoning. The vesicles and necrosis should be treated in a mamer similar to that advised for victims of severe burns. Within one week following the injury, or thereabouts, physical therapy should be instituted. Orthopedic consultation should be sought and a rehabilitation program arranged for the patient.

REFERENCES

 Venoms. Amer. Assoc. Adrancement Sci., Withington, D.(. 467 p .
(.IMPBELL」, (. H. 196t. Venomous Snake Bite in I'apuat and Its Treatment with Tracheotomy, Artificial Respiration and Antivenin. 'Trans. R. Soc. Trop. Med. Hyg. 59:263-273.
CHRISTENSEN, P. A. 1955. South African sinake Venoms and Antivenoms. South African Institute Medical Research, Johannesburg. 142 p .
EFRATI, P. and REIF, L. 1953. Clinical and Pathological Observations on Sixty-five Cases of Viper Bite in Israel. Amer. J. Trop. Med. Hyg. 2: 1085-1108.
GENNARO, J. F., Jr. 1953. Observations on the Treatment of Snakebite in North America, p. $427-4+6$. In, H. L. Keegan and W. V. Macfarlane. Venomous and Poisonous Animals and Noxious Plants of the Pacific Region. Pergamon, Oxford.
KAISER, E. and MCHL, M. 1958. Die Biochemie der 'Tierischen Gifts. F. Deuticke, Wien. 258 p .

KEEGAN, II. L. and MACFARLANE, W. V. (editors) 1963. Venomons and Poisonous Animals and Noxious Plants of the Pacific Region. Pergamon, Oxford. 456 p .
NATIONAL ACADEMY OF SCIENCES, NATIONAL RESEARCI COUNCIL, COMMITTEE ON SNAKEBITE THERAPY. 106\%. Interim Statement on Snakebite Therapy. Toxicon 1:81-87.
PHISALIX, M. 1922. Animaux Venimeux et Venins. Masson, Paris, 2 vol.
REID, H. A. 196t. Cobra-Bites. Brit. Med. J. 2:540-545.
REID, H. A., THEAN, P. C., CHAN, K. E. and BAHARAM, A. R. 1963. Clinical Effects of Bites by Malayan Viper (Ancistrodon Thodostoma). Lancet 1:617-621.
RUSSELLL, F. E. 1961. Use of Crotatus Monovalent Antivenin from Rabbit Serum. Curr. Theralp. Res. 3: 438-440.
RUSSELL, F. E. 1962. Snake Venom Poisoning, rol II, p. 197-210. In, G. M. Piersol, Cyclopedia of Medicine, Surgery and the Specialties. F. A. Davis, Philadelphia.

Chapter VI

RECOGNITION OF POISONOUS SNAKES

TABLE OF CONTENTS

I'arge
Introduction 25
General Procedures in Identification 2.1
Distinguishing Features in Identification $\because 6$
Venom Apparatus 26
Head shield: \because
Eye (haracteristics 2.
Dorsal Scale Characteristics こ々
Ventral scutes 28
Tail Characteristics 28
Sex 28
Color and Pattern $2!1$
Key to Families of Snakes 30
Disposition of Unidentified Snakes $\therefore 2$
Method of Ireservation 32

INTRODUCTION

This chapter is designed primarily for identification of freshly killed snakes, not live snakes seen in the field, nor long preserved and faded museum specimens. Identification of live snakes in the field requires practice and experience, and the guidelines do not lend themselves to brief verbal descriptions, as a rule. It is to be hoped that the snakes submitted for identification will have their heads on and not be too badly smashed. Identification is considerably more complicated if the head is badly mutilated, and a decapitated body may be midentifiable.

GENERAL PROCEDURES

 IN IDENTIFICATIONIt is assumed that the user of this manual will have some knowledge of where the specimen he is trying to identify came from. For example, if a suspected coral snake is brought in for identification, there will be no reason to differentiate it from the 40 or so species of coral snakes found from Mexico southward if it is known that it was collected in North Carolina. Knowledge of the area of habitat narrows the field considerably. Identifying snakes from tropical areas often poses a problem in that tropical snake faunas are
much violur in the mumbers of sperodes, and the di-l dibution of some of these is pootly known.
 if there is ath merputle speromen to work with, it slould bu pussibla to distineruish first between proisonmbs athl nompoismmons smakes, then, if poi-
 fion in alount an procent of the cases, and finally lo :trrive at the eotreet speceses in about 3 out of 4 (:ares.

First, if there is any doubt that the anmmal is a suake and a poisonous one or if the fimily of the smake is maknown, then Kieg to the riamilies of stakes. pature 30 this chapter, should be consulterl. If the smake is known to be a poisonous land snake, then refer to the correct reographic section of Chapter VII and thence to the descriptions of the common species of the area; if a poisonous marine snake, refer to Chapter VIII.

If practicable every medical unit that enters sun area where snakebite is a hazard should build (1p : in iclentified collection of local poisonous and nompoisonous snakes (see p. 32 for directions). small individuals or just the heads of large snakes should be suflicient. Such collections are often essential for rapid identification of dangerous species.

If the specimen camnot be identified readily, it may be:

1. In aberrant individual or one from an atypical population;
2. In uncommon species listed in the regional table but not described in detail;
3. In unknown species or one not previously known from that geographic region;
4. A harmless species incorrectly identified as poisonous. (To confirm the family, recheck char-

Figure 4.-Drawing of head of pit viper, showing the position and appearance of the loreal pit. This heatsensitive structure is characteristic of the family Crotalidae.
aetoristies using Kiey to tho finmilios, this chapter.)

In examining mu midentifed shake look first at tha heat. In all pit vipers (finmily Crotali(lae) there is a deep hollow between the eye and nostril and slighty below it line connecting the two (see firuro 4). The impression is one of an extra nostril. (I large pit viper, liothrops atrox, is known in Mexieo as cuatro marices or fonr nos(rils.) 'These pits aro actmally sensitive heat receptors. They absolutely identily a snake as a pit viper, since they are not seen in any other type of smake. However, some pythons and boas do have pits on the upper lip. The pits may be ditlicult to recognize for they are often camouflaced by the head markings so that they are not visible except by close inspection; this offers another reason for bringing the intact snake in for identifeation.

DISTINGUISHING FEATURES IN IDENTIFICATION

Venom Apparatus

Fangs and renom glands are the only anatomic features that set poisonous snakes apart from nonpoisonous ones. Caution is demanded in examining the mouth of a freshly killed snake; the biting reflex may persist in a severed head for as long as 45 minutes. The long, moveable fangs of vipers, normally sheathed in whitish membrane and rotated parallel to the roof of the mouth, can be readily demonstrated and recognized. Fangs of elapid snakes (cobras, kraits, mambas, and related species) are smaller in size, located toward the front of the mouth, and fixed to the jaw (see fig. 5). In cobras, mambas, and some other species they are large enough to be readily recognized, but in coral snakes and some other small elapids this is not the case. Enlarged anterior teeth are seen also in some nonpoisonous snakes and can be confusing. Sea snake fangs are small and hard to distinguish. Rear fangs in colubrid snakes are rather difficult to see and extremely difficult to differentiate from nongrooved enlarged teeth found at the back of the jaw in many nonpoisonous snakes. Fortunately only a few rear-fanged snakes in Africa are sufficiently dangerous that their identification
is important, and the fangs in these kinds are quite long.

Head Shields

The size and arrangement of shields on the top and sides of the head are most helpful in snake identification. In the great majority of snakes

C

Figure 5.-Skulls representative of various families of poisonous snakes, showing lengths of maxillary bones (shaded) and positions and lengths of fangs. A. Cobra (Elapidae), showing short fang in front part of maxillary bone; B. Pit viper (Crotalidae), showing long fang on short maxillary bone; C. Rearfanged snake (Colnbridae), showing short fang on rear part of long maxillary bone (Other parts of skull diagrammatic only).
the top of the head is covered by large symmetrical shields, typically 9 in number (see fig. 6). More or less division of these shields into small scales is seen in many kinds of ripers, many boas and pythons, and in a few other kinds of snakes. Reduction of the number through fusion of shields is seen mostly in small burrowing snakes.

Figure G-Mead of typical colubrid suake, illustrating arrangement of scales from dorsal and lateral views. Any of these scales may he moditied in shape or absent in rarimus groups of poisonous snakes.

If there are typical large shields on the crown and no pit between the eye and nostril, look at the side of the head in front of the eye. The loreal shield (see fig. (i) is absent in nearly all poisonous smakes of the Elapidae as well as the Ifrican mole vipers (Viperidae). This shield is also lacking in a good many nompoisonous snakes, but many of these are small burrowers or strictly aquatic snakes which may be eliminated on other grounds. The size of the eye may be important (see (GLOSSARY).

Eye Characteristics

The shape of the pupil of the eye should be noted in live or freshly killed snakes. Most. snakes have round pupils, some have vertically elliptical pupils, and a few have horizontally elliptical pupils. Vertically elliptical pupils are
thatacteristic of most vipers hat some mompoison mus shakest aloo haw this type. Most venomons Maphels haven romed pupils.

Dorsal Scale Characteristics

"Tho number of dorsal sabe rows is sometimes important in snako identification. The method of counting is shown in ligure 7 . While it is quite possible to make this count on a snake "in the round" so to speak, the inexperienced individual may obtain better results by skiming out a section of the borly and Hattening the skin. It is seldom possible to take a satisfactory scale count of a live smake. It is often desirable to note if

Fiourf T.- Method of counting dorsal scale rows. Figure drawn as though skin has been slit down belly and spread flat ($V=$ ventral plates).
the dorsal scales have a longitudinal raised ridge, keeled. or if they lack such ridges, smooth (see fig. 8).

Ventral Scutes

In the vast majority of snakes, large transverse scutes extend the full width of the belly. These are considerably reduced in size in boas and pythons, some freshwater and burrowing snakes, and in many sea snakes (see figure 9). They are completely absent in the burrowing blind snakes, and in some sea snakes. A complete count of the rentrals is routine procedure in systematic herpetology. It is easily done, but rather tedious, and is not required for most of the species identifications in this manual.

Tail

The tail of a snake begins at the anal plate which covers the opening of the cloaca. The
form of the tail is often important in identifict-fon-virtually diagnostic in sea snakes and ratllesmakes. The subeandal sentes are usinally in a double row (paired); however, in some species, all or most may be in a single row (see figure 10). A count of the subcaudials is routine.

Sex

Sex of a suake can sometimes be determined readily by observing eggs or developing young in the oviducts. Pressure by fingers or injection of liquid at the base of the tail will usually evert the copulatory organs or hemipenes of a male smake. 'The morphology of these organs is important in snake taxonomy. Usually they are

Figure 8.-Figures of dorsal scales showing major types of scale ornamentation: A. smooth scales. B. keeled scales.

Figure 9.-Appearance of ventral plates in various groups of snakes. A. Vxtending full width of belly (most snakes) : B. Moderately reduced (hoas, pythoms, some aquatic snakes) : C. Markmy reduced (many sea snakes).
rather large fleshy structures bearing spines or other ornamentation, but they may be quite smooth, small, and slender.

Color and Pattern

Color and pattern are the most widely used but, infortumately, are the most deceptive criteria for snake identification. Color and patterns in snakes have evolved primarily for purpose of concealment and, as a result, totally unrelated snakes may appear very much alike. Many tree snakes, for example, are green with a light line on the flank, and many suakes that live in the crevices of rock or under bark have dark heads with a light collar at the nape. Real or apparent mimicry of renomous snakes by harmless species is very widespread and may involve similarities in behavior as well as appearance. Color and pattern rary greatly even within a species. In snakes of semiarid lands, it has been observed for centuries that there is often correspondence of general body color with the color of the soil. Abnormal increases of dark pigment (melanism) or its complete absence (albinism) can in rave cases give rise to black coral snakes or white rattlesnakes. Pattern is generally more constant than color, but several kinds of snakes may show both ringed and striped types of pattern. Pat-
tern and colors of young smakes may be totally diflerent from those of the adult. Sex differences in color and pattern are also seen.

Figure 10.-V'ndersides of tails of representative snakes. snake with ENTURE anal plate and a SINGLE row of subcaudal sentes; suake with DIVIDED anal plate and PMARED rows of subcaudal scutes $(V=$ ventral plates).

the families of SNakes

The laeys eriven in Chapter \'11 diatingenish the varoms kimets of prosisomons lame smakes from one amother: (hapter V'll dist inguishes tha poisonous seat shakes. often, howerer, there aro basic qutestions ats to whether or not a snake is poisonons, and to what family it belongs. Sometimes a family allocation will ate as a domble check on at tentative identilication and also, oreasionally, a family designation will be all that is possible be("anse of the condition of the smake.

The following key has been designed to sort out many kinds of nompoisonous snakes and snakeliko animals before finally distinguishing bet ween typical harmless snakes and poisonous ones by the only positive means of identification of a poisonous kind-the presence of fangs in the upper jaw.

Tos identify an amimal by use of this key, the teader mast begin with the lirst complet (pair of statements), decide which ono deseribes tho animat at hame, and then prowed to tho complet indicated at. the end of the proper descriptive phase. This procedure is followed with the next complet and so on. Thus, an alternative decision is oflered with each couplet until the reader finally determines the proper category for the animal. The animal must posesess all of the characteristics mentioned in the proper line of coup-lets-not just the final characteristic. Therefore. it is always necessary to start at the beginning of the key.

The following key should always be used if there is any question as to whether or not the animal at hand is a poisonons snake:

KEY TO THE FAMILIES OF SNAKES

1. A. Body elongate, but legs or fins present on NO'T 1
front and/or rear parts of body SNAKE
B. Body elongate, no legs or fins 2
2. A. Skin slimy, with or without bony (fish- NOT A
like) scales SNAKE
I3. Skin dry, with thin homy sealem- 3
3. A. Skin formed into distinct broad rings that NOT A extend around body. SNAKE
B. Skin formed into small overlapping or juxtaposed scales (not in rings), at least on back 4
4. A. Eye with a movable lid NOT A ぶNKE
B. No movable lid 5
5. A. 'Tail round in cross-section ; not oar-shaped 7
B. 'Tail compressed into an oar-like blade 6
6. A. Head covered with small gramular scales; no large shields on crown; watersnakes of Southeast Asia COLUBRIDAE
B. Some crown shields present; see fig. 6; seasnakes, Chapter VIII HYDROPHIDAE
7. A. A row of enlarged, transverse scutes (ven-
trals) down the belly 11
8. Body scales uniform above and below 8
9. A. Tail with an enlarged and ornamented scute or with several spiny scales near tip (SE Isia only); Indian rough- scaled snakes UROPELTIDAE
B. No such specialized tail, a single spine or none on tip 9
10. A. Eye under a distinct round scale; most of head covered with small granular scales 16
11. Eye under irregularly-shaped head plate; head cowered with enlatged whters 11
12. A. Scute containing nostril forms border of lip, 14 rows of scales around body; slender blindsnakes LEPTOTYPHLOIPIDAE
B. Scute containing nostril separated from lip by surrounding scales; more than it scale rows; typical blindsnakes TYPHLOPLDAE
13. A. Ventral scutes extend full width of belly 15
B. Ventral scutes narrow, not extending width of belly 12
14. A. Ventrals scarcely twice size of dorsals, or less $1:$
B. Ventrals distinctly enlarged, more than 3 times width of dorsals: boas and pythons BOIDAE
15. A. Head mainly covered with small scales 16
B. Mead covered with large scutes, though not in "typical" pattern (see fig. 6) 14
16. A. A large median shield behind frontal; 15 scale rows (SLi lsia only) ; sumbeam snake NENOPELTIDAE
17. No large median scute behind frontal; 17 scale rows or more (SE A sia and north- ern South America). Pipe suakes ANILIDAE
18. A. A spur-like hook on either side of rent (often hidden in small depressions) 12
B. No indication of spurs 16
19. A. One or two large fangs near front of upper jaw on each side 17
20. No sign of fangs at front of upper jaw. Typical harmless snakes; about 2,000 species, only 2 in C. and S. Africa are dangerous COLUBRIDAE
21. A. Long fangs on short maxillary bone which can rotate to erect them: no other teeth on maxillary 18
22. Shat liange un longe maxilhary lome which
 laty bome lendime limer: cobrits and molatives
1s. I. I lomeal pit, seo lige t; (sid limoper, λ sia, aml Jmeric:ans only) ; pit. vipers- \qquad (HOTMAI) NE
23. So loreal pit (Limopre, Asiat, and Alrica only) : (old World vipers VIPERIDAE

PRESERVATION AND DISPOSITION OF UNIDENTIFIED SNAKES

Suakes that camot be identified should bo preserved in the mamer given in the next paragraph and submitted to the nearest U.S. Naval Preventive Medicine Unit. Such units will provide identification service. If delivery to such a mit is not practicable, then contact the nearest natural history museum or other institution which might hase a stafl herpetologist and request help in identification.

The two best preservatives to prepare a specimen for shipment or delivery to a herpetologist are:

1. Commercial formaldehyde diluted with 5 to ${ }^{9}$ parts of water;
2. (irain alcohol diluted to 75 percent.

However, animals as large as most snakes will decay if placed in a preservative without some prior preparation. An ideal specimen and one which will remain in a state of minimum decay may be prepared by thoroughly injecting the body cavity and base of the tail with the preservative. A large syringe is the best means to inject the fluid, but if one is not available, multiple slits should be cut into the belly and the base of the tail and this will enable the preservative to reach the
deep tissues. 'Then put a wad of cotton or gatuze into its mouth to hold it open. The specimen should then be neatly coiled, belly side up, in a container sulliciently large to cover the snake with the preservative. Do not crowd several specimens in a single container.

Large snakes of 5 feet or more in length shonld be eviscerated or skimed out leaving only the head and tail intact before placing them in a contaner of preservative. In intact head will be sufficient to differentiate between poisonous and nonpoisonous species.

After the specimen has hardened (5 to 7 days is usually required), it may be removed from the liquid, wrapped in damp rags, put in a plastic bag and shipped to the herpetologist for identification. A tag should always be included which gives the location where the specimen was collected in enough detail so that it can be located on a map in an ordinary atlas. If the name of a small native village is used then the name of the district, department, county or other political subdivision must be added. Other information to put on the tag which will greatly increase the scientific value of a specimen includes date of collection of specimen, approximate altitude, habitat, and the name and address of the collector: Use waterproof ink or a pencil in filling out the tag.

Chapter VII

DISTRIBUTION AND IDENTIFICATION OF POISONOUS LAND SNAKES OF THE WORLD

INTRODUCTION

To facilitate the identification of some 360 speries of poisonons land snakes of the world, the land areas have been divided into 10 regions (see Map 1). 'This chapter has heen divided into 10 sections to correspond. In each section has been included a definition of the region, a list of poisonous species which occur in it and their distribution within the area and, importantly, a Key to the Genera of poisonous snakes inhabiting the region. The main body of the text of each section is separated into generic divisions (based upon the Key to Genera) and each division is headed by a deseription of the genus. Following thereafter are individual descriptions of the poisonous species which are responsible for the largest numbers of bites within the area, or are believed to be of serious danger to any adult human inhabiting or entering the region.

Except in a few cases which are specifically in-
dicated, the list of poisonous suakes of the world by Klemmer (1963) has been used as the basis for the nomenclature used in this chapter and elsewhere in the mamual. The list of references appended to the end of each section is not intended to be comprehensive, hut indicates the main sources of information utilized in preparing the accomuts and may serve as an introduction to the literature on the poisonons snakes of the region. This same kind of information is given on sea smakes (Hydrophidae) in a separate chapter (Chapter VIII).

Figures have been inchuded for all of the dangerously poisonous species if photographs or drawings were arailable at the time of publication. Missing photographs, or likely sources of such photographs, should be forwarded to the Preventive Medicine Division (Code T2), Bureau of Medicine and Surgery, Nary Department. Wrashington, D.C. for inclusion in future editions of this mamual.

Map 1.-Map of world showing geographic divisions used in Chanter Vil.

Section 1

NORTH AMERICA

Definition of the Region:
Continental United States and Canada

TABLE OF CONTENTS
Page
Distribution Chart 36
Introduction 37
Key to Genera 37
ELAPIDAE:
Micmuroides 38
M位ти!и :
CROTALIDAE:
Agkistrodon 38
Rattlesnakes 39
Crotalus 40
Sistrumes 4.3
References 45

TABLE 5.-DISTRIBUTION OF POISONOUS SNAKES OF NORTH AMERICA

Certain groups of adjoining states are here treated as units. The symbol \boldsymbol{J} indicates distribution of the species is widespread within the unit. Restriction of a species to a part of a unit is indicated appropriately ($\mathrm{SW}=\mathrm{Southwest} \mathrm{}, \mathrm{etc)}. \mathrm{}$.

INTRODUCTION

North America has a comparatively small but well-known poisonous snake fauna. It includes 2 species of coral snakes, the closely related copperhead and cottonmouth, and 15 species of rattlesmakes. Most of these have been further divided into subspecies so that some 39 named forms are recognized.

Poisonous snakes have been reported from all mainland states except Alaska, although they have been exterminated in Maine. Only the copperhead and 3 species of rattlesnakes have really extensive ranges. Poisonous snakes in Canada are restricted to comparatively small sections of southern British Columbia, Alberta, Saskatchewan, and Ontario.

Rattlesnakes are known from elevations up to 11,000 feet in the southern Sierra Nevada of California, to about 8,000 feet on dry, rocky slopes in Montana, and to the tops of the highest mountains in the southern Appalachians. In spite of this, poisonous snakes are rare in high mountains, in northern evergreen forests, and in heavily farmed or urban industrial areas.

Some species survive unexpectedly well in suburban areas, especially in the southern United States. Areas with unusually large populations of poisonous snakes include parts of the Great Plains (rattlesnakes), tho lower Mississippi

Valley and Gulf Coast (rattlesnakes and cottonmouths), and the southern Appalachians (rattlesnakes and copperheads).

Snakebite is by no means rare in the southern and western United States. Incidence is highest in children in the 5 to 15 year age group, and most bites are sustained close to home whether in rural or suburban areas. Many bites result from deliberate handling of venomous snakes. Since 1950, there have been no more than 10 to 25 deaths annually in the United States.

Mar 2.-Section 1, North America.

KEY TO GENERA

1. A. Loreal pit absent (see fig. 6) \because
B. Loreal pit present (see fig. t) 5
2. A. Red, black and yellow or white rings encircle the body 3
B. Ring markings not as above NP*
3. A. Red and yellow or white body rings in contact; end of snout black 4
B. Red and black rings in contact; end of snout red, white, yellow or black NP
t. A. Yellow headband followed by black ring Micrurus
B. Yellow headband followed by red ring Miomuroides
4. A. Tail ends in rattle 6
B. No rattle on tail Agkistrodon
5. A. Nine large shields on crown Sistrurus.
B. Crown shields small or fragmented into scales Crotalus
[^1]
GENERIC AND SPECIES DESCRIPTIONS

ELAPIDAE: Genus Micruroides Schmidt, 1928.

Irizoma comal smate.

 whized. It is found in tho southwestern United States bull northwestern Mexteo. It is a small smake but is conshldered dangerous (see p. 6i2).

Definition: Head small, not distinct from neck; smont Founded, mo distinct canthus. Body slemder and elongate, not tapered; tail short.
byes small; pupils round.
Head scales: The usual $!$ on the crown. Laterally, nasal in contact with single preocular. Ventrally, mental separated from anterior chin shields by first infralahials.
body scales: Dorsal smooth, in 15 nonoblique rows throughout body. Ventrals $200-212$; anal plate divided; subcaudals paired, 19-32.

Maxillary teeth: Two relatively large tubular fangs followed, after an interspace, by 1-2 small teeth.
licmarks: Differs from nonpoisonous snakes as Micrurus does; differs from Micrurus in the solid black head color which ends in a straight line across the parietals, and in the teeth behind the fangs.

ELAPIDAE: Genus Micrurus Wagler, 1824.

American coral snakes.
About 40 species are currently recognized. They range from North Carolina to Texas, and from Coabuila and Sonora, Mexico, southward through Central and South America to Bolivia and Argentina. Most are small species but some attain lengths in excess of 4 feet. All are dangerous.

Definition: Head small, not distinct from neck; snout rounded, no distinct canthus. Body elongate, slender, not tapered; tail short.

Eyes small; pupils round.
Head scales: The usual 9 on the crown, Laterally, nasal in contact with single preocular. Ventrally, mental separated from anterior chin shields by first infralabials.

Body scales: Dorsals smooth, in 15 nonoblique rows throughout body. Ventrals 177-412; anal plate divided or entire; subcaudals $16-62$, usually paired but more than 50 percent single in some species.

Maxillary teeth: Two relatively large tubular fangs with indistinct grooves; no other teeth on bone.

Remarks: Nearly all coral snakes have color patterns made up of complete rings of yellow (or white), black, and usually red,

Eastern Coral Snake, Miomurus fulvius (Linnaeus).

Identification: Head small; body slender with little taper; tail short; scales smooth with high gloss.

End of snout black followed by broad yellow band
across base of bead and wide, black, neck ring. Hody completely encircled by black, yellow, and red ringsthe red and wellow ring.s touching. If the red and black riggs fouch each other, if the end of the snout is red, whitish, or sperkled, and if the colors fall to enctrele the body, the smake is not a North American eoral shake (see plate 1I, dig. 5). These rutes are not necesserilll true in tropical America. In the small Arizona (oral snake (Mieruroides curbsamthus) the yellow head band is followed by a wide red neek ring (see flg. 25).

Average length 23 to 32 inches; maximum 47 inches.
Distribution: Southern Cnited States from coastal North Carolina to west 'rexas and into northeastern Mexico at low elevations. Inhabits grassland and dry open woods; sometimes found along streams; occasionally in suburban areas.

Remarks: Very secretive but sometimes found in the open during early or midmorning. Kather quick in its morements. When restrained it elevates the tail with the tip slightly curled and frequently tries to bite.

Venom of this coral snake is very toxic but small in quantity. Many bites seem to be incffective. In a recently reported series of 20 cases, 10 showed little or no evidence of poisoning. However, of 6 that showed definite signs of systemic envenomation, 4 died. A species specific antivenin soon will be available from Wyeth Laboratories.

CROTALIDAE: Genus Agkistrodon Beauvois, 1799.

Moccasins and Λ sian pit vipers.

Twelve species are recognized. Three of these are in North and Central America; the others are in Asia, with one species, A. halys (Pallas) ranging westward to southeastern Europe. The American copperhead (A. contortrix) and the Eurasian mamushi and its relatives (A. hall/s) seldom inflict a serious bite but \boldsymbol{A}. acutus and A. rhodostoma of southeastern Asia, as well as the cottonmouth (A. piscivorus) of the southeastern United States, are dangerous species.

Definition: Head broad, flattened, very distinct from narrow neck; a sharply-distinguished canthus. Body cylindrical or depressed, tapered, moderately stout to stout; tail short to moderately long.

Eyes moderate in size; pupils vertically elliptical.
Head scales: The usual 9 on the crown in most species; internasals and prefrontals broken up into small scales in some Asian forms; a pointed nasal appendage in some. Laterally, loreal pit separated from labials or its anterior border formed by second supralabial. Loreal scale present or absent.

Body scales: Dorsals smooth (in A. rhodostoma only) or keeled, with apical pits, in 17-27 nonoblique rows. Ventrals 125-174; subcaudals single anteriorly or paired throughout, 21-68.

American Copperhead, Aqkistrodon contortrix

 (Linnaeus).Identification: Head triangular; body moderately stout; facial pit present; pupil elliptical; most of subcaudals undivided.

Pinkish-buff, russet, or orange brown with dark brown to reddish crossbands; belly pinkish white with large dark spots or mottling; top of head yellowish to cop-pery-red; sides paler; end of tail yellow in young, black to dark greenish or brown in adult. The crossbands are narrow in the center of the back and wide on the sides in eastern specimens, only slightly narrowed in western ones (see plate I, fig. 5 ; plate III, fig. 6; plate IV, fig. 1).

Average length 2 to 3 feet; maximum slightly over 4 feet; males larger than females.

Distribution: The eastern United States (Massachusetts to Kansas and southward exclusive of peninsular Florida), westward into trans-Pecos, Texas. Frequents wooded, hilly country in the north and west; lowlands in the south; sometimes plentiful in well populated areas.

Remarks: Nocturnal in warm weather, diurnal in cool. In rocky country frequently hiberuates in ledges with rattlesnakes and various nonpoisonous species. Usually remains coiled and quiet unless closely approached or touched; vibrates tail when angry; ofteu seems reluctant to strike, but some individuals are very irritable.

Copperheads account for the great majority of snake bites seen in the eastern United States, exclusice of Florida and the Mississippi delta. Fatalities are almost unknown.

Cottonmouth, Aghistrodon piscivomus (Lacépède).

Identification: A pit viper related to the copperhead but very widely confused with nonpoisonous semiaquatic snakes of the genus Natrix. For identification of dead specimens, note presence of facial pit, elliptical pupil, undivided subcaudals-all features lacking in nonpoisonous snakes within the range of the cottonmouth. For field identification, head of cottonmouth is decidedls heavier and eyes less prominent than in the harmless water snakes. Behavior further distinguishes it (see Remarks).

Olive or brown with wide hackish crossbands often

Figure 11.-Cottommonth. Agkistrodon piscirorus. Photo by Isabelle IIunt Conant. (See also plate I, fig. 6; plate III, fig. 5)
enclosing lighter centers; belly is rellow and heavils marbled with black or dark gray; dark stripes behind eye; end of tail black. Large snakes, especially in the western part of the range, mas be almost uniformly black above. Young have a more vivid pattern and a sellowish tail.

Arerage length 30 to 45 inches; maximum about 6 feet.

Distribution: Southeastern Virginia through southern lowlands and up Mississipni valles to southern Illinois: west to central Texas, the southern third of Missouri, and extreme southeastern Kansas. Inhabits swamps, shallow lakes, and sluggish streams; usually absent from swift, deep, cool water.

Remarks: Often seen basking by dar on logs, stones, or branches near water; also active at nisht in warm weather. Frequently it is a belligerent snake that does not try to escape but throws back its head with mouth widely open showing the white interior and at the same time twitching or vibrating the tail. Sonpoisonous water snakes almost always swim or crawl away rapidly when alarmed.

Bites by cottonmouths are fairly frequent in the lower Mississipni Valley and along the Gulf Coast. Fatalities are rare, but the renom has strong proteolstic activity. Tissue destruction may be severe. There is no species specific antivenin for the cottommonth and copperhead. Polyvalent Crotalid Antivenin (Wyeth Inc., Philadelbhia) should be used.

RATTLESNAKES

Rattlesnakes are distinctively American serpents that can be almost always identified by the jointed rattle at the tip of the tail. The rattle is restigial in a single rare species found on an island off the Mexican coast. It is too small to be a good field identification characteristic in the pigmy rattlesnakes (Sistrums mitiarius) and in young of some other small rattlesnakes. Although most of the rattle can easily be pulled or broken off, the base or matrix usually remains. Rarely the entire tail tip including the rattle matrix may be missing as a result of injury. Nine large crown shields are seen in rattlesnakes of the genus Sistrumes. In the genus Crotalus the crown shields are more or less extensively fragmented. The facial pit is present in all rattlesnakes (see fig. 4 p. 26). Scales are keeled and subcaudals undivided.

Species identification among rattlesnakes may be difficult, but it is often important. The renoms show significant differences that can influence treatment and prognosis. Polyvalent Crotalid Intivenin (Wyeth, Inc., Philadelphia)
is speritic for the semons of the eastern and western diamomethacks (('potulus memmentens and (2. atoros). It is ctlective (o) some degree agrainst all ratllomakn venoms.

The lagere species of rattesmakes feed principally upon small mammals; tho smaller species mostly upon lizards. All matlesmakes are livebearing.

CROTALIDAE: Genus Crotalus Linnaeus, 1758.
lintlesmakes.
Gems C'rotalus Limnaeus, 1758. Rattlesnakes. About en species of rattesnakes are currently recog. nized. Most species are in the sonthwestern United states and morthern Mexico. One spechs (C. durissus) ranges sonthward into sonthern South America. two are found enst of the Mississippi River, and two as far north as Camada. I few of the very small species, and small individuals of large species (less than 2 feet) may offer little danger, but most species do; some are highty dangerons.

Definition: Head broad, very distinct from narrow neck, canthus distinct to absent. Body eylindrical, depressel, or slighty compressed, moterately slender to stont ; tail short with a horny segmented rattle.

Eyes small; punils vertically elliptical.

Figure 12.-Head of Eastern Diamondback Rattlesnake, C'rotalus adamanteus, showing absence of many crown scutes. Drawing by Lloyd Sandford.

Head scales: Supraoculars present, a pair of internasals often distinct, oceasionally a pair of prefrontals; enlarged canthal scales often present; other parts of crown covered with small scales. Laterally, eye separated from supralabials by $1-5$ rows of small scales.

Body seales: Dorsals keeled, with anical pits, in 19-33 nonoblique rows at midbody. Yentrals 132-206: subcaudals $13-5 \overline{5}$, all single or with some terminal ones paired.

Eastern Diamondback Raflesnake, Cirolulus adla menterex Bemuvois.
dentification: Whiln lts range the only large rattlesmake with distinct, diaronat, whtish stripes on side of hemd; tall more or less Indistinctly ringed.

Ohve green to dark brown with central serles of darker diamond shaped botches each with a somewhat tighter center and a disthet cream or sellow edbe; belly cream heavily clonded with gray:

Average length $31 \frac{1}{2}$ to $51 / 2$ feet ; maximmu 8 feet.

Figure 13.-Eastern Diamondback Rattlesnake, Crotalus adamentons. Photo by Isabelle Hunt Conant.

Distribution: Coastal lowlands from North Carolina through Florida to extreme eastern Lonisiana. Found in dry pine woods, palmetto thickets, old fields. However, may enter water, either fresh or salt.

Western Diamondback Rattlesnake, Crotalus atrox Baird and Girard.

Identification: Two light, diagonal stripes on side of head, posterior one extending to angle of mouth; tail distinctly ringed with black and gray or white, the black rings as wide as or wider than the pale ones; scales

Figure 14.-Western Diamondback Rattlesnake, Crotalus atrox. Photo courtesy Scientific American. (See also plate III, fig. 2).
between supraoculars small; two scales between nasals and in contact with rostral.

General coloration buff, gray, brown, or reddish with diamonds that are less clear-cut, often appearing dusty with indistinct light edges; belly cream to pinkish buff sometimes clouded with gray.

Average length 3 to $51 / 2$ feet; maximum 7 feet.
Distribution: Central Arkansas to southeastern California sonthward throngh most of Texas into Mexico to northern Veracruz and sonthern Sonora with an isolated population in Oaxaca. Inhabits many trpes of terrain from dry, sparsely wooded rocky hills to tat desert and coastal sand dunes. Often found in agricultural land and near towns. Generally aroids dense forest, swamps, and elevations abore 5000 feet in the United States but may be found up to 8,000 feet in Mexico.

Red Diamond Rattlesnake, Crotalus mber Cope.
Identification: Separated from the western diamondback only by its more reddish color and minor details of scalation (usually 29 rather than 2π seale rows at midbody; first lower labial usually divided in ruber, undivided in atrox).

Average length 40 to 50 inches; maximum nbout 5 feet.

Figure 15.-Red Diamond Rattlesnake, Crotalus rubcr. Photo by Isabelle Hunt Conant.

Distribution: Baja California and southwestern California; this species and C. atrox meet only in a narrow zone in extreme northeastern Baja California and adjacent California. Red diamond rattlesnakes are largely confined to rocky hillsides with scrubby regetation but at no great elevation.

Remarks: These 3 large rattlesnakes, the red diamond, eastern diamondback, and western diamondback. are quite similar in appearance but differ somewhat in behavior. The red diamond rattler is the most diurnal of the group, although all may be active by day during cooler times of the year. Western diamondbacks in the northern part of their range aggregate in large numbers to hibernate-a trait seen in some other species of rattlesnakes as well.

Temperament in the group shows much individual variation. Generally the red diamond rattler is the mildest mannered, the western diamondback the most irritable. All may defend themselves with great rigor. They sometimes raise the head and a loop of the neck
well above their coils to gain elevation in striking. All may occasionally strike without rattling. The red diamond rattler often hisses loudly.

These snakes have long fangs and copious venom; the bite of an adult of any of the 3 is a serions matter. The eastern and western diamondbacks cause most of the snakebite fatalities in the United States. Venom of the red diamond ratlesnake is detinitely less toxic and fatalities from its bite are rare.

Mojave Rattlesnake, Crotulus soutulutus (Kemni$\cot t)$.

Identification: Very similar to the western diamondback and prairie rattlesmakes in pattern and general appearance. Scales on top of head between and anterior to eyes large. resembling shiedds of most snakes; dark rings on tail much narrower than light suaces between them: general color often greenish or olive.

Arerage length 30 to 40 inches: maximum about 4 feet.

Figure 16. Mojave Ratilesnake, Crotalus scutulatus. Ihoto hy Isabelle Hunt Conant.

Disfribution: West Texas morthwestward to the Mojave Desert of Califorma and sontheastward on the Mexican himhand. Occurs vers largely in desert and prairie-desert transition zone. Decidedly a lowland snoke in the northern part of its range; frequents arid mountain country in Mexico.

Remarks: Habits much like those of the western diamondback but not generally so bad tempered.

It is important to recognize the Mojave rattlesuake, for its renom is more toxic and has a more marked effect on respiration than that of ans other North American rattlesnake. Bites by this species oftentimes show little local reaction and may not be considered serious until severe respiratory difticnlty sumervenes.

Rattlesnakes of the Crotalus virilis complex are widespread and sometimes difficult to diflerentiate. However, over a large part of their range they are the only rattlesnakes present. The following characteristics are helpful in identification:

1. Light clingonal stripes on side of head, if present, extend to behind angle of mouth;
\therefore 'Tail may hat abut half dark or ringed. If ringed, the light color is that of the bodly:
B. Dattern lastally of (mosishathe or spots mather Hann dimmonds:
2. I'sually 4 sambes betwern masals and in con bane with mitual.

Prairie Rattlesnake, ('rotulus: d', viridlis (Ratines: (itte).

Fioune 17.-Drairie dattlesmake Crotalus re viridis. lhotu by 1。, M. K゙lather. (See also plate HI, dig. 3.)

Ifonfificulion: Light diagonal stripe behind eye narrow; body blotches rectangular, nstally with narrow light edses: ground color often greenish-gray or olivebrown.

Average length 3 to 4 feet: maximum a little under if feet: males larser than females.

Distribution: South Dakota, Nebraska, and Kansas west to about the Continental Divide ; north into southern (anala. south into extreme northern Mexico. Occurs in dry grassland and rocky hills; on open rocky momata slopes to at least 9,000 feet.

Great Basin Rattlesnake, Crotulus. r. Iutosus Klauber.

Figture 18.-Great Basin Ratlesnake. Crotalus viridis lutosus. I'hoto by New York Zoological Societs.

 Distributim: Wiestorn liah, wenthern Jdatw, Nevala,
 : 11 : 5 .

Pacific Rattlesnake, ('rolulus ${ }^{\prime \prime}$. oregremes Holhrouli.

Ifonfifoution: Light stripe behind eve whe, often fulistinet; battern of diamonds or hexumonal botches; sround color dark kray, ollie or brown forotalus v. helleri, a sonthern subspecies, differs from orgemus only in minor details.

Arerage length is to a feet; maximum a little over b fert.

Distribution: Nouthern British Columbia, western Washington, most of Oregon and the northern twoHirds of California, southern California mostly west of

Figure 19.-Southem Pacific Rattlesnake, Crotulus viridis helleri. Photo by Findlay E. Russell.
the coast range, the northern half of Laja Califormia. (Composite range for 2 . orcgamus and v. helleri). Absent from the humid lacific Northwest and largely contined to semiarid regions in Washington and Oregon. Common over much of California from sea level to 11,000 feet but avoids extreme desert conditions. May be plentiful in agricultural districts and suburbs.

Remarks: Rattlesnakes of the Crotalus viridis gronn are largely dinrnal, although they aroid intense light and heat. In the northern part of their range they assemble in great numbers to hiliernate.

In disposition these snakes are, on the average, less irritable than diamondbacks and less likely to make a determined defense. A characteristic defensive gesture is to protrude the tongue as far as possible and wave it slowly up and down.

Bites from rattlennakes of the viridis group are relatively common. There is evidence that renom of the Pacific subspecies oreganus and helleri is more toxic than that of eastern subspecies. Numbness and prick-
ling sensations about the mouth are rather common; local symptoms may not be proportionately severe. Bites of the small Great Basin and Colorado Ilatean subspecies rarely are dangerous.

Sidewinder, Crotalus cemstes Hallowell.

Identification: Presence of an elevated hombike scale above the ere identifies this rattlesnake.

Cream, tan, gray, light brown or pinkish with rows of darker spots; tail ringed.

Average length 18 to 25 inches; maximum about 30 inches; females slightly larger than males.

Distribution: Deserts of southeastern California and southern Nevada southward throngh western Arizona into adjacent Sonora and Baja California. Most common in sandy flats and dunes with sparse vegetation; sometimes on arid rocky hillsides.

Romarks: Sidewinders often rest during the day with part of their hody buried moder sand and are active at niflit. The sidewinding type of motion, difticult to describe but ummistakable when seen, is characteristic of this snake and some heasthotied sand vipers of Africa and Asia. It is used occonsionally by some other desert shakes including a few other species of rattlesnakes. The name sitewinder is also applied incorrectly to other kinds of small rattlesnakes in the sonthwestem United states.

Fioure 20.-Nidewimber, Erotatus ecrastes. IPhoto by New York Komogical society.

The disposition of the sidewinder is about the same as that of the ririlis sroup of rattlesmakes. Bites, formerly quite unusual, lave hecome more frequent with the growing use of desert areas for residential and recreational purposes. Fatalities from bites are few because the quantity of renom is small.

Timber Rattlesnake, Crotalus homitus Limnaeus.
Identification: The only rattlesnake of the eastern United States showing the combination of small scales between the eyes, no prominent light stripes on the side of the head amb, in athlt smakes, it back tail.

Yellow, gray, huff, or pale brown with sooty black crossbands or chevrons narrowly edged with pale sellow or white; often an amber, pinkish or rusty stripe down the middle of the back; belly cream to pinkish white
more or less suffused with dark gray. Specimens from upland areas of the eastern tinited states are sometimes almost uniformly black above.

Arerage length 3 to 4 feet; maximmm a little orer if feet.

Figeve 21.-Timber Itattlesmake, crotalus horridus. Lhoto by New lork Zoulogical somety. (See alan Mate III. tic. f.l

Distribution: New Fingland to the Florida panhande. west to central Texas, north in the Mississippi Valleg to sollheastern Mimesota. Fomme in wooded rocks hills in the northern part of the range, swamps and lowhand forest in the sontlo.

Remarks: Timber rattlesnakes congregate in numbers to hask and hibernate in rocks bhfis and ledgesa habit which has preatly facilitated their extermination in populons areas. They are secretive and partly nocfurnal durine hot weather.

Rather mikd tempered, they often do a good deal of preliminary rattling ant feintine hefore striking. 'This rattlesmake and the copperhead are used in rituals lig the snake-handing enlts of the sonthern momentas. Bites amons the cultists are fairly frequent, and uo medical care is wiven ats a rule. It least 20 fatalities have ocentred amont these shatio hamders.

CROTALIDAE: Genus Sistrurus Garman, 1883.

Pigmy Rattlosmakes.
Three species are recognized: two are in the eastern and central linited states. the other in the southern part of the Mexicin plateath. Sone is considered espe(ially dangerous, althongh s , catcnatus is reported to sometimes canser death in children.

Definition: Head broad, very distinct from narrow neck; canthis obthse fo acute Body cylindrical, tapered, slender to moderately stont ; tail short, terminating in a relativels small horny, kegmented rattle.

Eyes small to moderate in size ; pupils rertically elliptical.

 showing appearance of large erown scotes characteristic of this senns. I)rawing by Idoyd Sandford.

IBody seales: Dorsals strongly keeled, with apical pits, in 1:-3-1 nonoblique rows at midbods, fewer anteriorly and posteriorly. Ventrals $120-160$; subcaudals 10)-8!), all entire or a few posterior ones pared.
licmarke: IBrattstrom ($106 t$) suggested that the genus sistrurus was not recognizable, and that the 3 included species should be placed with the other rattlesnakes in the genus Crotalus.

Pigmy Rattlesnake, Sistmurus miliarius (Linnaeus).
Identification: This species and the Massasauga (S. catcnatus) are the only Cnited States rattlesnakes with the crown corered bs larwe shields. In this species the tail is relatively lons and sleuder, terminating in a tiny rattle that mas be difficult to see under field conditions.

Ground color light mray, tan, reddish-orange or dark gras often with an orange or rusty midline stripe; 5 rows of sooty spots or short dark crossbars; belly white hearily clouded and spotted with black; tail barred. Average length 15 to 29 inches: maximum 31 inches.

Figure 23.-Pigmy Rattlesnake, Sistrums miliarius. Photo by New York Zoological Society.

Distribution: The southern lowlands and piedmont

 shes in the somthera part of tho ratago: lows rocky woreled hills in noribwest.
licmarlis: 'The rattle of theso suakes is rublible ouly at very close ranke. 'Itory ner rather abort and bad tempered. 'Ilae hito can be followed by severe pals athe extenslro swelling even when the smatie is a small
 coser is on record. لowever.

Massasauga Rattlesnake, Sistmums catenatus (Ratinesque).

Identification: 'Ihe large shiclas of the crown disfinguish this species from all other United States rattlesmakes except the pigmy rattlesnake. It is best differentiated from that species by the shorter tail and well reveloped rattle. langes of the two overlap only in small areas of 'Texas and Oklahoma.

Ground color gray, tan, buff or yellowish with rows of dark gray, brown or black spots often with narrow light edges; belly marbled with dark gras, black and white: tail barred. Specimens from the northeastern part of the range sometimes are uniformly black when adult.

Average length 18 to 28 inches; maximum 37 inches; males larger than females.

Figure 2t.-Massasauga, Sistrumus catenutus, Photo by Vew lork Zoological Society. (See also plate I, fig. :.)

Distribution: The Great Lakes region southwestward to extreme sontheastern Arizona and southern Texas; presumably in adjacent northern Mexico. Inhabits bogs and marshes in the northeast, prairie in the west and southwest.

Remarks: Highly secretive snakes usually remaining quiet or seeking to escape when encountered but biting readily when angered. The venom is highly toxic for experimental animals, and there have been recent well authenticated cases of fatal bites in man.

REFERENCES

CONANT, Roger 1958. A Field Guide to Reptiles and Amphibians of the United States and Canada East of the 100th Meridian. Houghton Mifflin: Boston, xiii +336 pp., pls. 1-40 (some color), figs. 1-62, Maps 1-248.
FITCH, Henry S. 1960. Autecology of the Copperhead. Cniv. Kimsas Publ. Mus. Nat. Hist., vol. 13, pp. 85-288, pls. 13-20. figs. 1-26, tables 1-26.
KLAUBER, LAURENCE M. 1956. Rattlesnakes: Their Habits, Life Histories, and Influence on Mankind. Univ. of California

Press: Berkeley and Los Angeles. Vol. I. xxix $+1-$ T08 pp., figs., tables, maps, frontis. (color). Vol. II, xvii $+\pi 09-1476 \mathrm{pp}$. , figs., tables, frontis., (color).
STEBBINS, Robert C. 1954. Amphibians and Reptiles of Western North America. Mc-Graw-Hill: New York, xxii + 1-528 pp., pls. 1-104.
WRIGHT. Albert II. and Anna A. WRIGHT 1957. Handbook of Snakes of the United States and Canada. Comstock: Ithaca, N.Y.. 2 vols., $1105 \mathrm{pp} ., 305$ figs., 70 maps.

Section 2

MEXICO AND CENTRAL AMERICA

Definition of the Region:
All of Mexico, British Monduras, Guatemala, El Salvador, IIondumas, Costa licu. and I'rnamu. The istrmels just offshore but not the islunds of the West Indies, are included.

TABLE OF CONTENTS
Page
Map of the region 49
Introduction 19
Distribution Chart 48,50
Key to Genera 51
ELAPIDAE:
Micruroides 52
Micrurus 52
CROTALIDAE:
Agkistrodon 53
Bothrops 51
Crotalus 55
Lachesis 56
Sistrumus. 57
References 57
TABLE 6.-DISTRIBUTION OF POISONOUS SNAKES OF MEXICO \& CENTRAL AMERICA

	¢	$\begin{aligned} & \text { 曷 } \\ & \vec{J} \\ & \frac{E}{4} \\ & \text { a } \end{aligned}$	\%	$\begin{aligned} & \\ & = \\ & = \\ & = \end{aligned}$	-	\%		-
MLAPIDAE								
Micruroides euryxanthus_	NW							
Micrurus alleni.						N	X	S
M. ancoralis								
M. bernadi	W							
M. browni	s		N					
M. clarki							X	X
M. diastema	E	X	E		W			
M. dissolencus								\leqslant
M. distans_	W							
M. elegans_	E		X					
M. ephippifer	W						-	-
M. fitzingeri	E							
M. fulvius-	NE							
M. laticollaris_	SW							
M. Latifasciatus	S	---	S					
M. mipartitus								
M. nigrocinctus	S	X	S	X	X	X	K	N
M. nuchalis	S							
M. ruatanus					N			
M. stewarti.								N
CRO'TALIDAE								
Agkistrodon bilineatus	X	X						
Bothrops atrox.	X	X	I	X	X		N	N
B. barbouri----	SW							
13. bicolor-	S		S					
13. dumi	S							-
13. godmanni	S	?	K	X	N	X	X	X
13. lansbergii	S	?	X	X	X	X	X	K
B. lateralis,							X	E
B. melanurus	S							
B. nasutus_	E		x	?			x	X
B. nigroviridis	S		x	\%	X	?	X	N
B. nummifer	SE	X	X	X	I	X	X	N

INTRODUCTION

The poisonous snakes of northern Mexico and of the Mexican platean southward to Mexico City are very similar to those of the United States. These high and arid regions are inhabited mainly (speaking in terms of poisonous snakes) by various species of rattlesnakes. However, the Arizona coral snake (Micruroides euryxanthus) also is found along the northern border of the western states of Chihmahua, Sinaloa, and Sonora, and the coral smake, Micmurs fitzingeri. is found in the south.

As one descends from the platean to the coastal plain, however, even as far north as 'Tamaulipas and Nayarit, a strange tropical snake fama is found. Included in this are many kinds of coral snakes, the cascabel (tropical rattlesnake), CrotaTus durissus, and various members of the American lanceheads, the genus Bothrops.

The coral snakes are a negligible source of danger although they are highly venomous and the case fatality rate is high (approaching 50 percent). Because they are such secretive animals, however, they are seldom encountered. Almost every coral snake bite is inflicted on a person that is attempting to catch or kill the reptile. If people would but leave the bright-colored snakes with red, black, and yellow (or whitish) rings alone, this group would offer little danger. It is the absence of a broad head and vertically elliptical pupils (characteristic of pit ripers) that causes the unknowledgeable man to mistake a coral snake for a nonvenomous species.

The other poisonous species are all pit vipers and are easily identified by the loreal pit, the broad head, eyes with rertical pupils, and the rough-scaled body. Most of the species of rattlesnakes are northern and western in distribution. Those along the Mexican-United States border are the same as those which occur in the United States.

However, the cascabel (Crotatus durissus) ranges through the grasslands and other dry and open areas of the tropical lowlands throughout the region as far north as southern Tamaulipas. It attains a length of 6 feet and has a large store of a very toxic venom. Apparently, too, its venom does not cause the formation of antibodies in horses to the extent that most venoms do; and,
therefore, the antivenin is only weakly effective. This makes it one of the most dangerous snakes of the region and one of the most dangerous snakes on earth.

Most of the bites through the tropical areas of Central America are inflicted by members of the American lanceheads (Bothrops). Many of the bites are by bush and tree vipers such as the eyelash viper (Bothrops schlegelii). These often cause serious injury to the affected part but seldom cause death. The major killer of man throughout the region is the barba amarilla, Bothrops atrox (often miscalled fer-de-lance). This 5 to 8 foot snake has an umpredictable temperament; it is easily irritated to strike and carries a large supply of powerful renom. It causes a large number of deaths each year.

The huge bushmaster (Lachesis mutus), on the other hand, which grows to a length of 9 to 12 feet, is seldom encountered due to its purely nocturnal habits. It causes relatively few bites, and these appear to be no more serious than those of the barba amarilla.

Map 3.-Section 2, Mexico and Central America.
TABIE 6.--DISTRIBUTION OF POISONOUS SNAKES OF MEXICO \& CENTRAL AMERICA (continued)

[^2]
KEY TO GENERA

The poisonous snakes of this region belong to two families, the Elapidae, which is represented by two genera of coral snakes, and the Crotalidae, represented by five genera. The latter are easy enough to distinguish by the presence of the loreal pit on the side of the face (fig. 4), a broad head which is distinct from a narrow neck, and the eye with a vertically elliptical pupil. However, there are several kinds of nonpoisonous snakes that look very much like the coral snakes and the latter have few easily visible features that absolutely distinguish them. Coral snakes have a relatively narrow, though often flattened, head that is not distinctly set off from the slender and cylindrical body. The eye is small and has a round pupil (as do most nonpoisonous snakes)
and there is no distinctive pit on the side of the head.

In general coral snakes have rings of red, black, and yellow, but in some species the yellow may be almost white, in others the red is absent except on the head and tail and one is black and red only (brown and white in preservative). In the tricolor species the black rings may occur singly, separated from one another by rings of yellow and red, or in groups of three (triads), each triad separated by broader rings of red. The harmless mimics of these coral snakes, such as the tropical forms of the milksnake (Lrmpropeltis triangulum) and the members of such tropical genera as Pliocercus. tend to have the black rings of their patterns prired. 'They also tend to have longer tails than the short-tailed coral snakes. Howerer, any brightly-ringed snake should be treated with respect until its identity as a harmless species is confirmed.

B. Dorsal scales at midbody smooth

B. Pupil of eye round

4. A. Color pattern of body made up of alternating rings of
red, yellow, and black (red and black in one species)

5. A. Black rings alternating with yellow; OR single, separated by broad bands of red and yellow; OR in

6. A. Entire snout and main part of head black; first band
after gellow merk ringr red.- Mierumod, x
B. Usually some light color anterior to eyes; first band
after red or yellow neck band black----------------- Morumes

B. Crown of head with small scales or irregular plates_-.............-. 10

B. Crown of head with small scales or a few irregular plates_--- Crotalus

[^3]
GENERIC AND SPECIES DESCRIPTIONS

ELAPIDAE: Genus Micruroides Schmidr, 1928.

Irizoma comal smake.
 beguized. It is fonnd in the sonthwestern lonted states and morebwestern Mexion, if is a small smake but is (whsidered datmaronts.

Wrfinition: Hearl small, not distinct from neck: snout tombed, no distinct canthus. Wexiy slemder and elongate, not taperedf tatil short.

Lyes small: punils rommel.

Head seales: The usual ! on the crown. Laterally, hasal in contact with single preocular. Ventrally, mentat separated from anterior chin shields by first infralabials.

Body salas: Dorsals smooth, in 15 nonoblique rows throughout body. Ventrals ᄅOH-2t2; anal plate divided; subeatudals patred, 19-3:.

Maxillary teeth: Two relatively large tubular fangs followed, after an interspace, bs $1-\ddot{2}$ small teeth.

Remarks: Differs from nompoisonons smakes as Mirrurus does: difters from Micrurus in the solid black head color which ends in a straight line across the parietals. and in the teeth behind the fangs.

Arizona Coral Snake, Micrmoides euryxanthus (Kennicott).

Identification: The elongate body, unmodified rostral, and black snout distinguish this species from the simi-larly-colored nonpoisonous sand snakes (Chilomeniscus) and shosel-nosed snakes (Chionactis) that inhabit the same region. The sellow- or white-bordered red rings distinguish it from the king suakes (Lampropeltis) which have black-bordered red bands. Adults average 1: to 16 inches in length: occasional individuals attain a length of 20 inches.
snout and anterior part of head black, ending in a straight line across posterior tips of parietals. A light

Figure 2--Arizona Coral Snake, Micruroides curyxanthus. The straight line across the ends of the parietals and the red color of the first body ring are distinctive. Photo by Charles M. Bogert.
 rlag: remalmber of benty whth atternathag rage of black
 ternathos back tull thit.

Hiseribulion: smmberart areas from western 'Texns amb western (hilhatha through sonthern New Mextor. Arizoma, Sonora, sum Sitaloat on 'Tiburon Island.

firmorlis: 'This small and sercotive smake is inofferssive abd very fow hites have been reported. However, it mossesess athghy toxic venom and should not be treated carelessly.

ELAPIDAE: Genus Micrurus Wagler, 1824.
American comal snakes.
About 40 species are currently recomnized. They range from North Carolina to Toxas, and from Mexico sonthward throngh Central and south dmerica to

Figure ze.-Fitzinger's Coral Snake, Micrurus fitzingeri (Jan). An unusual red, yellow, and black coral snake that ranges well onto the southern part of the Mexican plateau. Photo by Charles M. Bogert.

Bolivia and Argentina. Most are small species but. some attain lengths in excess of 4 feet. All are dangerous.

Definition: Head small, not distinct from neck; snout rounded, no distinct canthus. Body elongate, slender, not tapered; tail short.

Eyes small; pupils round.
Head scales: The usual 9 on the crown. Laterally, nasal in contact with single preocular. Ventrally, mental separated from anterior chin shields by first infralabials.

Body scales: Dorsals smooth, in 15 nonoblique rows throughout body. Ventrals $177-112$; anal plate divided or entire; subcaudals $16-62$, usually paired but more than 50 percent single in some species.

Maxillary teeth: Two relatively large tubular fangs with indistinct grooves; no other teeth on bone.

Remarks: Nearly all coral snakes have color patterns made up of complete rings of yellow (or white), black, and usually red. They differ from their nonpoisonous "mimics" in that the red color, when present, is usually bordered by the yellow or white; in the nonpoisonous kinds it is usually bordered in black.

Atlantic Coral Snake, Micrurus diastema (Duméril, Bibron, and Duméril).

Identification: A coral snake with numerous narrow black rings, which alternate with yellow and red rings. Black rings not narrowed laterally, usually complete below. Adults average 2 to 3 feet in length.

Black rings narrowly edged with rellow, which is sometimes absent; red rings of approximately the same width; red scales tipped with black. Black rings not in triads, varying from 10 in lucatan to as many as 60 on the body in the highlands of Guatemala.

Ventrals 192-209; subcaudals $32-57$; no supra-anal tubercles.
Distribution: Eastern Mexico southward through Guatemala and British Honduras to Honduras.

Remarks: This remarkably variable coral snake is fairly constant in any one region and can usually be distinguished by the irregular black spots in the red rings.

Broad-banded Coral Snake, Micrurus distans

 (Kennicott).Identification: A coral snake with broad red bands and single narrow black bands. The head is mainly black and the lips are yellow. Adults arerage 2 to 3 feet in length; maximum length $421 / 4$ inches.

The body color is mainly red, the red scales not blacktipped. There are 11-17 black rings on the body, the rings on the sides may be slightly narrower, and $3-6$ black rings on the tail. The crown of the head is black back to the level of the eyes, but the lips are sellow (or white) and there are spots of the light color on the snout.

Ventrals 208-233; subcaudals 38-5!.
Distribution: Western Mexico from Sonora to Guerrero.

Remarks: This coral snake has a remarkable harmless mimic which inhabits the same region. The neotropical milksnake, Lampropeltis triangulumb nelsoni Blanchard, has the same broad red bands and narrow black bands. However, as in most coral snake mimics. the black bands occur in pairs-an occurrence never found in coral snakes.

Black-ringed Coral Snake, Micmus mipartitus (Duméril, Bibron, and Dumeril).

Identification: A coral snake with broad black rings and numerons narrow white, rellow, or red (in Central America) rings between. Adults average about 24 inches in length; occasional individuals may exceed 3 feet.

Snout black, a broad red band passing just behind ese and covering posterior part of head. Body with $34-81$ black rings semarated by narrow, (usually) sellow rings; tail with $3-\overline{5}$ black rings and ${ }^{3}-\overline{5}$ red rings.

Ventrals 197-310: subeaudals 26-34.
Distribution: Rain forest areas from Nicaragua to northern Venezuela and Peru.

Remarks: The unusual coloration of this coral snake. a red ring on the head and $2-\bar{y}$ others on the tail. is distinctire.

Black-banded Coral Snake, I/icrumes nigrocinctus (Girard).

Identification: A coral snake with a black snout and broad red bands alternating with single uniform black rings, each separated from the other with relatively narrow sellow or whitish rings. Alults average 2 to 3 feet in length; occasional individuals may attain lengths of orer 4 feet.

One of the coral snakes with $12-20$ single black rings on the body ($3-7$ on tail) which are narrowly edged with fellow or whitish. Alternating red rings usually much broader than black, but relative amounts of black. sellow and red vary geographically. Snout black with darker color extending back over frontal area in a point. A broad sellow band over posterior part of head and a black ring on neck. Scales of red area often tipperl with black.

Ventrals 188-2 20 : subcaudals 31-60. Males have su-pra-anal tubereles.

Distribution: Lowland rain forest areas (up to an altitude of alout 4.000 feet) from southern Mexico (Guerrero) sonthward throngh Central America to northwestern Colomhia. This is nne of the most common species of coral snakes in the region.

Remarks: Two fatal bites referrable to this species are known from Costa Rica (S. A. Minton). No antivenin is produced for this species.

CROTALIDAE: Genus Agkistrodon Beauvois, 1799.

Moccasins and Asian Pit vipers.
Twelve species are recognized. Three of these are in North and (entral America: the others are in Asia, with one species, A. halyfs (l'allas) ranging westward to southeastern Europe. The American copperhead (A. contortrix) and the Furasian mamushi and its relatives (A. halys) seldom inflict a serious bite but A. acutus and A. rhodostoma of southeastern Asia, as well as the cottommouth (A. piscirorus) of the southeastern United States, are daugerous species.

Definition: Head broad, flattened; very distinct from narrow neck; a sharply-distinguished canthus. Bodr crindrical or depressed, tapered, moderately stout to stout; tail short to moderately long.

Eyes moderate in size; pupils rertically elliptical.
Head scales: The usual 9 on the crown in most species; internasals and prefrontals broken up into small scales in some Λ sian forms; a pointed nasal appendage in some. Laterally, loreal pit separated from labials or its anterior border formed by second supralabial. Loreal scale present or absent.

Body scales: Dorsals smooth (in A. rhordostoma

 we patrad throughoust. こl-tis.

Contil, : Iflivistmonn bilimentus (iünt hers.
 with typheal leabphates abs obe thia hatht lian aloms the عanthus, vonthmith behtal the eye, another atong the upher fart of the summabials to the corner of the month. Difults averago oz $1 / 2$ to 3 feet: occastomal individuals exveed of fere

Juvenite indivhuals have broad hehtediged crosshands wh at lighte batemound: these disappear in adults exdept for traces of the white edging which persist as marrow irresular (rossbars of white-edged scates. Ventral colot dark browa with backedged white markings.

Figure 27.--Cantil, Agkistrodon bilincutus. Photo by New lork Zoolomical Society. (See also plate I, fig. 4.)

Dorsals heavily keeled, in 23-25 rows at midbody, fewer posteriorly. Ventrals $120-144$; subcaudals $50-68$, the anterior 20 or so single, the posterior ones paired.

Distribution: In swampy areas and along stream banks on both coasts of Mexico and Central America from Nuevo Leon and Sonora sonthward to the west coast of Guatemala and the east coast of Nicaragua.

Remarks: This is the only snake within its range with the brown color and twin light stripes on the sides of the head. It is aquatic and is often found swimming. It is presumed to be a dangerous snake; it is reported to cause serious local lesions but seldom death.

CROTALIDAE: Genus Bothrops Wagler, 1823.

American lance-headed vipers.
Between 40 and 50 species are currently recognized; all are found in tropical America and southern South America. There are three general groups: 1. Large, long-tailed terrestrial species, usually with paired subcandals: 2. Small, short-tailed terrestrial species with single subcaudals; and 3 . Small to moderate-sized arboreal species with prehensile tail, most of which have at least the anterior subcaudals single. The large terrestrial species are very dangerons, the others less so.

Definition: Head broad, flattened, very distinct from narrow meck; a sharply-distinguished canthus. Body
 (10 stonst: lall whort to modevately lonks.
diyes small to moterate in sizo ; puntles vertatly elHotleat.

Head seates: Suprancolars geberally present, fatermasals offen disthot, somettmes separated hy smatl segles ; rematuder of crown covered with small bmbricato serese: entarged canthals sometimes present. Laterally, second supralabial may make up antertor border of foreal pit or may he separated from it. Loreal scales present or absent.

Body scales: Dorsals keeled, in 10-3.7 nonoblighe rows at midbody. Ventrals 121-20.3: subcaudals single or paired, 2:-8:3.

Barba Amarilla, liothrops utrox (Limnaeus).

Idcntificution: An olive-green, gray, or brownish snake with a pattern of lateral darker (usually) blackedged triangles whose apices meet, or nearly meet, at the vertebral line. Adults average $\&$ to 6 feet ; record lengths exceed 8 feet.

Ground color hrownish, olive, or tan, with a narrow dark postorbital stripe and a series of about 20-30 paired lateral triangles. Each marking is lighter in the center and often has a light edging to the darkbordered triangle. Ventral surface light cream to yellow with dark blotches becoming more numerous posteriorly. Ventrals $180-220$; subcaudals $46-73$, all paired.

Distribution: Forest areas from sonthern Tamaulipas and southern Sonora, in Mexico, through all of Central America, and in South America southward to Peru and northern Brazil. A very widespread species that is common in banana, coffee, and cocoa plantations as well as in undisturbed forest regions; often found along streams.

Figure 28.-Barba Amarilla, Bothrops atrox (an individual from Trinidad). Photo by New York Zoological Society.

Remaris: This snake has long fangs and a highly toxic venom. It is probably responsible for more deaths in the Americas than any other snake. It will usually retreat if given the opportunity, but becomes aggressive if disturbed and will strike repeatedly.

Polyvalent antivenins for the bite of this snake are produced by Laboratorio Behrens (Venezuela), Instituto Butantan (Brazil), and Wyeth, Inc., Philadelphia.

Lansberg's Hognose Viper, Bothrops lansbergii (Schlegel).

Identification: A small brownish ground riper with upturned snout and a series of angular blotches down the back, separated into pairs by a light rertebral line. lody short and moderately stout; head broad. Adults average 18 to 24 inches in length.

Ground color light brown, tan, or gray with a dorsal series of paired dark brown blotches separated from one another by a thin light line; broadly separated from low lateral series of spots.

Canthus raised and sharp, snout raised and pointed. Eye separated from supralabials by $2-3$ rows of small scales. Dorsals 2.-27, heavily keeled. Ventrals 152159 ; subcandals 29-35, all single.
Distribution: In semiarid forest and brushy areas from Southern Mexioo and Guatemala through Central America to Colombia and northern Venezuela.
Remarks: This is one of several homnose ripers that inhabit the dryer areas of Central and northern South America. The similar R, uasutus Bocourt is found from Mexico over much the same region but generally in more moist situations.
Jumping Viper, Bothrops mummifer (Ruppell). Identification: A short, thick-bodied viper with dark saddle-shaped blotches on a tan or gray background. Adults average 18 to 24 inches in length.

Ground color tan, light brown or gray with about 20 dark brown or black rhomboid botches down the back, these often comected with lateral spots to form narrow crossbands. Top of head dark with oblique postorbital band forming upper limit of light color on sides of head. Ventral color whitish, sometimes botched with dark brown. 'Snont rounded, ('anthus sharp), Body exceedingly stont; tail short.

Figure 29. Jumping Viper, Bothrops mummifer. With its coarse scales and diamond-shaped markings, this snake is sometimes mistaken for a roung bushmaster (Lachesis mutus). The nonspectialized tail tip (see fig. 32) distinguishes it. Photo by New York Zoological Society.

Dorsals strongly keeled, tubercular in large individuals, in $23-27$ rows at midbody fewer (19) posteri-
orly. Ventrals 121-135; subcaudals 26-36, all or mostly single. Ese separated from labials be 3-1 rows of small scales.

Distribution: Low hilly rain forest and plantations from southern Mexico to Panama.

Remarks: This is the largest of the smaller terrestrial tropical ripers. With its stout body it ean strike for a distance greater than its own body length. However, it has relatirely short fangs and its renom is not highly toxic.

Eyelash Viper, lBothrops schlegelii (13erthold).

Identification: I green, tan, or rellow tree viper with raised and pointed scales abore the ere. Bodr moderately stout, with a prehensile tail: head broad and distinct. Adults average 16 to 24 inches in length.

Ground color green, olive-green, tan or rellow with scattered black dots which mar form irregular crossbands. Green and tan individuals commonls lave narrow reddish and brown crossbands or a reticulated pattern of red. lelly green or yellow, spotted with black.

Fictue 30.-Fivelasll Viper. Bnthoops sehlenclii. I'hnto by New lork Zonlugical Suciett.

Canthus slarp; a row of small soales above eye 。2-3 of them raised and pointed. Dorsals $19-2.9$, moderately

Distribution: In trees and bushes through rain forest areas and cacan plantations from southern Mexion southward thromeh (entrall Americat to Vobador and Venezuela.

Remarks: There are several green "palm ripers" but B. schegclii is the most commonly seen amd is the only one with the raised scales ahowe the eye. None appears to be highly danderous and no specife antivenin is produced for this group of lance-headed vipers.

CROTALIDAE: Genus Crotalus Linnaeus, 1758.

Rattlesmakes.

About $12 \overline{5}$ species of rattlesnakes are currently recognized. Most species are in the southwestern United States and northern Mexico. One species (C. durissus) ranges southward into southern South America, two are found east of the Mississipni River, and two as far north as Canada. A few of the vers small species, and small individuals of large species (less than 2 feet) may

 15. $\mathrm{F}(1)$.

Definifim: Deat broad, vory dhalmet fom harrow

 stont : tatit short with a horns segmonted rattle.

Wyes small; puplls vertheally elliptlat.
Hean scates: suprameatars pesent. A pair of intermasals offen distiact, oceashomally a patre of prefontals; rablared mathal scales often present ; wher parts of crown corered with small seales. Jateratly, eye separated from supralabials by $1-5$ rows of small scales.

Lbudy sables: Dorsals keeled, with apheal pits, in 19-
 (abulals 1:3-4.7, all single or with some terminal ones paired.

Mexican West-coast Ratllesnake, Crotalus basiliscus (Cope).

Itentificefion: The only rattlesnake within its range With diamond-shaped dorsal markings. Body moderafely stout and rather triangular in cross section. Adults average 4 to $\overline{5}$ feet: maximum length 6 feet, () $3 / 4$ inches (k lauber, 1996).

Head uniform grayish brown or olive green except for dark postorbital bar and lighter labials; no distinet markings on crown or neek. Body brown or grayish olive with 26-11 dark light-edged, rhomb-shaped (diamond) blotches. Tail gray, darker-banded or almost micolor without distinct markings. White or cream(olored below.

Dorsals strongly keeled, in $2 \overline{2}-29$ rows at midbody, fewer posteriorly. Yentrals $174-206$; subcaudals $18-36$.

Distribution: The coastal plain and mountain slopes of western Mexico from southern Sonora to central Oaxaca. Mainly an inhabitant of thorn forest, but ranges upward into tropical rain forest in the south.

Remarkis: Little has heen renorted on the effect of

Figure 31.-Mexican West-const Rattlesnake, Crotalus basiliscus. Photo by San Diego Zoo.
the bitte of this siferifes. Hownere, it produces laghe amomats of n highly foxte venom. A large indtwhat

folywatent antivenin is produced by the Instituto Nathonal de Highene Mexico.

CROTALIDAE: Genus Lachesis Daudin, 1803.

Bushmaster:

A single species, L. mutus, is found in tropical America. It attains a length of 9 to 12 feet and is considered dangerous.

Definition: Lead broad, very distinct from narrow neck; snout broadly rounded, no canthus. Body cylindrical, tapered, moderately stout; tail short.

Eyes small; pupils vertically elliptical.
Head scales: A pair of small internasals separated from one another by small scales; a pair of narrow supraoculars; other parts of crown covered with very small scales. Laterally, second supralabial forms anterior border of loreal pit, third very large; eye separated from supralabials by $4-5$ rows of small scales.

Figure 32.-Underside of Tail Tins of a Lancehead (Bothrops), above, and the Bushmaster (Lachesis), below. The sping "burr" formed of divided subcaudals is distinctive of the bushmaster. Drawings by Lloyd Sandford.

Body scales: Dorsals heavily keeled with bulbous tubercles, feebly imbricate, in $31-37$ nonoblique rows at midbody, fewer posteriorly. Ventrals $200-230$; subcaudals mainly paired, 32-50, followed by 13-17 rows of small spines and a terminal spine.

Bushmaster, Lachesis mutus (Linnaeus).

Identification: This large tan or brown snake with black or dark brown rhombs is easily recognized. The peculiar burr of pointed spines near the end of the tail is distinctive. Adults average 5 to 7 feet in length; occasional individuals attain a length of 9 feet; a maximum of 12 feet has been reported.

Ground color tan or pinkish with 23-37 black or brown rhombs on body. Markings with light centers; tail dark with light crossbands. A dark postorbital
stripe which continues onto the neck．White or light yellowish below．

Distribution：Rain forest and tropical deciduous forest regions from southern Nicaragua to the coastal

Figure 33．－13ushmaster．Lachesis mutus．1＇hoto by Isabelle Hunt Conant．
lowlands of Ecuador and the Amazon basin of Peru， Bolivia，Brazil，and Paraguay．

Remarlis：This is potentially a very dangerous suake with long fangs and large amounts of rather toxic venom．However，its strictly nocturnal habits keep it from coming into contact with humans except rarely and few bites have been recorled．

Specitic antivenin is produced by the Instituto Ibu－ tantan（Brazil）．

CROTALIDAE：Genus Sistrurus Garman， 1883.

Pigmy Rattlesuakes．

Three species are recognized；two are in the castern and central United States，the other in the sonthern part of the Mexican platean．None is consitered especially dangerous，although S．catenatus is reported to some－ times canse death in chidren．

Dcfinition：Head broad，very distinct from narrow neck；canthus obtuse to acute．Body cylindrical，ta－ pered，slender to moderately stout；tail short，terminat－ ing in a relatively small horns，segmented rattle．

Eyes small to moderate in size；pupils vertically el－ liptical．

Head scales：The 9 typical scales on the crown． Laterally，nasal in contact with upper preocular or sepa－ rated from it $b y$ loreal scale；eye separated from supralabials by 1－3 rows of small scales．

Body scales：Dorsals strongly keeled，with apical pits，in 19－27 nonoblique rows at midbody，fewer an－ teriorly and posteriorly．Ventrals 120－160；subcaudals 19－39，all entire or a few posterior ones paired．
hemarkis：Brattstrom（1964）suggested that the genus sistrurus was not recognizable，and that the three included species should be placed with the other ratlesuakes in the genus Crotalus．

Mexican Pigmy Rattlesnake，Sistrumes ravus （Cope）．

Identification：I small brownish rattlesuake with the 9 usual plates on the crown；the only such rattle－ snake within its range．Body moderately stout；head oral．Adults average about 20 inches in length；a large individual is 24 inches．

Ground color brown or gray with $2.5-3 \%$ small ir－ regular blotches down the back，small lateral spots may fuse with the dorsal row to form irregular cross－ hands：G－8 dark bands on tail．Head unicolor brown or with an arrow－shaped median dark marking． Ventral surface gellowish，blotched with brown．

Dorsals moderately keeled，in $21-23$ rows at midbody， fewer posteriorly．Ventrals $13 \mathrm{~S}-1 . ⿻ 上 丨 匕$ ；subcandals $20-30$ ．

Distribution：The sonthern part of the Mexican pla－ teall．
liemark：This is a small species and is not con－ sidered dangerous．

Figere 34．－Mexican ligmy Rathesnake，Sistrurns ra－ rus．Ihoto ly Isabelle Hunt Comant．

REFERENCES
 （See also（ieneral lieferences）

ALTARE\％del TORO，Miquel 1960．Los rep－ tiles de Chiapas．Inst．Zool．Estado，＇Tuxtla Gutierrez，Chiapas，Mexico． 7 －20t p．，illus－ trated．
BURGER，W＇Leslie 1950 A Preliminary Study of the Jumping Viper，Bothrops nummifer． Bull．Chicago Acad．Sci．， 9 （3）：59－67， 1 pl．
（CLARK．Herbert C． 1942 Venomons Snakes． Some Central American Records．Incidence of Snake－bite Accidents．Amer．Jour．＇Trop－ ical Med．， 22 （1）：37－49．
MERTENS，Robert．1952．Dis Amphibien und Reptilien ron El Salvador，auf Grund der Reisen von R．Mertens und A．Zilch．Abh． Senckenbergischen Ges．，487：1－120， 16 pls.
 at licar. Imprenta Msima, Sath dose, Costa

 of the ('omal shakes of Central dmeriea and Mexion. Zool. Sere Fiedd Mus. Nat. Mist. 20): 2!)-40.

S("MMH) K', Karl P. 10?36. Notes on Central American and Mexican Coral Shakes. Kool. Sor. Field Mus. Nat. Hist., 20 (20): 205-216, ligs. $21-27$.
S('HM11)'r, Katl', 1941. 'The Amphibians and leptiles of British IIonduras. Zool. Ser. Field Mus, Nat. Hist., vol. 22, no. 8, pp. (\%)-510.
 (iomus d/icrurus in ('olombia. FieldianaZool., : 31 (831) : :337-359, ligs. 65-69.
SAITII, Holart M., and di, H. 'TAYLOR. 1945. An Amotaterl Cheeklist and Key to the Suakes ol Mexioro. Bull. U. S. Natl. Mus. (1si) : 1-239 p.
s'TUIKI, L. ('. 19)63. I Checklist of the Iferpetof muna of (imatemala. Misc. Pub. Mus. \%ool. Cuiv. Michigan (122): 1-150, 1 pl., 1 map).
TAYLOR, Edward II. 1951. A Brief Review of the Snakes of Costa Rica. Vniv. Kansas Sci. Bull., 34 (part 1, no. 1) : 3-88, figs. 1-7, pls. 1-2\%.

NOTES

Section 3

SOUTH AMERICA AND THE WEST INDIES

Abstract

Definition of the Region: All of South America, including Colombia, Venezuela, British Guiana, Surinam, French Guiana, Brazil, Bolivia, Paraguay, Argentina, Uruguay, Chile, Peru. E'undor, and the istrand of Ambu off I enesuela. in uddition to those few islands of the West Indies inhabited by poisonous smukes: Martinique. Santa Lucia, T'obago, and T'rinidad.

TABLE OF CONTENTS

Page
Map of the region 63
Introduction 62
Distribution Chart 60, 61
Key to Genera 62
ELAPIDAE:
Leptomicrurus 63
Micmerus. 63
CROTALIDAE:
Bothrop: (0.)
Crotalus 67
Lachesis 69
References 69
TABLE 7.-DISTRIBUTION OF POISONOUS SNAKES OF SOUTH AMERICA \& WEST INDIES

[^4]
INTRODUCTION

The poisonous shakes of south America belong to five genera, only one of which (Leptomicrumes) is mestrieted to this continent. All but the rattlesmake genus ('rotulus, however, are restricted to tho Americ:m tropics and temperate south Imerica.

Although the bushmaster (Lachesis mutus) is the largest poisonous suake of the region, it is one of the minor hazards to human life since it is mainly of nocturnal habit and is sluggish or secretive during the day. The tropical rattlesnake (Crotalus durissus) and the large lanceheaded vipers such as Bothrops atrox and related species account for most of the deaths in the region.

Coral snakes (Micmumes and Leptomionmus) are relatively common in tropical regions. About
 during the day and canse relatively few cases of smakehite. However, they secrete venom of a highly poisonous, nemrotoxic variety which is responsible for a very high percentage (almost 50 percent) of deaths in victims of their bites.

The islands of the Caribbean with a few exceptions are free of poisonous snakes. All of the Greater Antilles (Cuba, Jamaica, Ilispaniola, and Puerto Rico) are free of poisonous kinds. Only Martinique and Santa Lucia, among the Lesser Antilles, have poisonous snakes, as do the continental islands of Margarita, Trinidad, and 'Tobago, and the offshore island of Armba.

On the mainland, only the highest of the Andes are free of poisonous snakes. At least one kind of poisonous snake ranges southward onto the pampas of southern Argentina, leaving only the southernmost tip of South America and the arid plains of Chile free of venomous snakes.

KEY TO GENERA

1. A. Dorsal scales at midlbody distinctly keeled 7
B. Dorsal scales at midbody smooth 2
2. A. Pupil of eye distinctly vertically elliptical NP*
B. Pupil of eye round 3
3. A. A loreal scale present (3 scales between nostril and eye) NP
B. No loreal scale 4
t. A. Color pattern of body made up of alternating rings of red, yellow, and black (red restricted to head and tail in some) 5
B. Color pattern not in rings 6
4. A. Black rings alternating with yellow; OR single, sepa- rated by broad bands of red and yellow; OR in triads separated by broad bands of red Micrurus
B. Black rings in pairs or single, separated by broad rings of red NP
5. A. A yellow band across back part of head; body black above, with numerous crossbands of red or yellow below which extend up sides as triangles Leptomicrurus
B. Pattern not as described above NP
6. A. With a loreal pit (fig. 4) 8
B. No loreal pit NP
7. A. With a segmented rattle at the end of the tail Crotalus
B. No rattle 9
8. A 'Terminal subcaudals divided into short spines, forming a "burr" (fig. 32) Lachesis
B. No such burr Bothrops
[^5]
GENERIC AND SPECIES DESCRIPTIONS

ELAPIDAE: Genus Leptomicrurus Schmidt, 1937.

Slender coral snakes.

Two species are recognized*; both are found in northern South America. These extremely elongate and slender snakes approach 3 feet in length. There are no reported bites but they are considered potentially dangerous.

Definition: Head small, not distinct from neck; snout rounded, no distinct canthus. Body extremely slender and elongate, not tapered; tail short.

Eyes small ; pupils round.
Head scales: The usual 9 on the crown. Laterally, nasal in contact with single preocular. Ventrally, mental in contact with anterior chin shields.

Body scales: Dorsals smooth, in 15 nonoblique rows throughout body. Ventrals 212-410; anal plate divided; subcaudals paired, 17-35.

Maxillary teeth: Two relatively large tubular fangs; no other teeth on bone.

Remark: These snakes differ from Micrurus and Micruroides in that the yellow crossbands are incomplete dorsally; they are best defined on the rentral surface and appear as triangles on the sides. The contact of mental and anterior chin shields also is distinctive.

Map 4.-Section 3, South America and the West Indies.

[^6]Amazon Slender Coral Snake, Leptomicrurus narducci (Jan).

Identification: A very elongate black coral snake with a broad yellow band on the back of the head. Adults arerage 2t to 30 inches; occasional indiriduals approach 3 feet.

Belly pattern of red (or yellow) and black crossbands, some of the red bands extending onto the sides as triangular blotches. Dorsal part of body solid black. Ventrals $240-410$: subeaudals $17-3$.
Distribution: The upper Amazon region, including northwestern Brazil, eastern Echador, Peru, and Bolivia.

Remarlis: The snakes of this genus are the only coral snakes in which the light rings are incomplete dorsally. The other species, L. collaris (Schlegel), differs in having fewer ventrals ($212-230$).

Almost nothing is known of these rare snakes. However, they attain a size that makes them a dangerous animal to pick up, No antivenin is produced for the snakes of this genus.

ELAPIDAE: Genus Micrurus Wagler, 1824.

Imerican coral smakes.
About 40 species are currently recomized. They range from North Carolina to Texas, and from Coahaila and Sonora, Mexico, sonthward throngh Central and South America to Bolivia and Argentina. Most are small species but some attain lengths in excess of 4 feet. All are dangerous.

Dcfuition: Head small, not distinct from neck; snout rounded, no distinct canthus. Body elongate, slender, not tapered: tail short.

Eyes small; pupils round.
Head scales: The nsual ! on the crown, Laterally, nasal in contact with single preocular. Ventrally, mental separated from anterior chin shields by first infralabials.

Body scales: Dorsals smooth, in 15 nonoblique rows throughout body. Ventrals $177-412$; anal plate divided or entire; subcaudals $16-62$, usually paired but more than 50 percent single in some species.

Maxillary teeth: Two relatively large tubular fangs with indistinct grooves: no other teeth on bone.

Remarks: Nearly all coral snakes have color patterns made up of complete rings of rellow, (or white), black, and usually red.

Annellated Coral Snake, Micrurus annellatus (Peters).
Identification: A usualls black and rellow coral snake with a narrow sellow band across the parietal scutes. This is a small species, the largest specimen is a little less than 30 inches.

Body with narrow sellow bands. Broad bands which are distinctly red in foung become so darkened as to be black in most adults. This forms a pattern of alternating broad black (originally red) rings with narrower

心

Diveribution: lblver vallegs of the momatala reghons

- urlis: 'Ihles mombtath sperifes lives at attitudes

Southern Coral Snake, $1 /$ irmum:s fromtalis (I)nméril. Bihron, and Duméril).

Hentifiention: A reosal staker with triats of back ringes abd honad red interspates: head hatek with edges

Crown hatk to the posterior end of the parietals, babials abd temporals spotted with yellow, crown sebtes eded with red or yellow. 13ody with ti-15 sets of black thiads, separated with broad bands of red.

Figure 3-5. Southern Coral Snake, Micrurus frontalis. The "triads" of three black and two yellow rings are characteristic of many South American coral snakes. Note that the red zones are bordered by black in these coral snakes. I'hoto by New Iork Koological Society.

Ventrals: $97-230$; anal plate divided; subcaudals 1526.

Distribution: Southwestern Brazil, northern Argentina, Lruguay, L’arasuay, and Bolivia.

Remarks: This is one of the larger species of coral snakes and is responsible for a number of deaths. An antivenin is prepared by the Instituto Butantan (Brazil) for this species and M. corallinus.

Hemprich's Coral Snake, Micrurus hemprichia (.Jan).

Iflentificution: A coral snake with narrow yellow and red rings, and broad black triads. Adults average 24 to 30 inches in length.

Snout and tip of chin black, with this color extending back over crown as a "cap." A red collar, narrowed
 segatated by bartow red rimge.
 36.

liomurlix: 'Thls is the only spectes of coral smake that normally has an entite anal phate. This mult the trads wi brond back rime make it it distinctive smake.

Amazonian Coral Snake, Micmums spixii Wirgler.
flentification: A coral shatie with triads of black rings which are all abont eqmal in with and narrower than the yellow and red rimgs. Alults average 3 to 4 feet: occasional imbivitals attain a longth of os feet.

Crown of head mainy black, often with shields edged and spotted with yellow : sides of head mostly light. Often a black collar followed by a yellow ring. Body with 4-9 complete triads of uarrow and equal black rings separated by somewhat wider bands of yellow and red. Ventrals 203-2-́․ : anal plate divided; subcaudals $16-$ \because.

Distribution: The Amazon region; IBrazil, Colombia, V'enezuela, Eruador, L'ern, and Bolivia.

Remarks: This is one of the largest of the coral suakes, and it has been responsible for several deaths. I molywalent coral snake antivenin is produced by the Instituto Butantan (Brazil).

Surinam Coral Snake, Mionumes surinamensis

 (Cuvier).Idcntification: A coral snake with a red head and triads of black rings, of which the middle one is distinctly broader than the lateral ones. Adults average about 3 feet in length; occasional individuals attain a length of about 4 feet.

Crown of head red, with each of the plates outlined in black. Body with $\overline{5}-8$ complete triads, each made

Figurf 36.-Surinam Coral Snake, Micrurus surinamensis. The red head and triad pattern are distinctire. Photo by Charles M. Bogert.
up of a broad middle black band, with narrow bands laterally. Yellow rings narrowed dorsally. Dorsals 17 19 anteriorly, 15 at midbody and posteriorly.

Ventrals 16:-206; anal plate divided (occasionally entire) ; subcaudals $30-10$.

Distribution: Apparently a semiaquatic snake (one specimen had eaten an eel) that inhabits the rim of the Amazon region; the Guianas, Brazil, Venezuela, Ecuador, Peru, and Bolivia.

Remarks: This is another of the large coral snakes. Its red head and the broad median band of the triad makes it distinctive.

CROTALIDAE: Genus Bothrops Wagler, 1824.

American lance-headed vipers.
Between 40 and 50 species are currently recognized: all are found in tropical America and southern south America. There are three general groups: 1. Large. long-tailed terrestrial species, usually with paired subcatulals: 2. small, short-talled terrestrial speces with single subcaudals; and 3. Small to moderate-sized arboreal species with prehensile tail. most of which have at least the anterior subcaudals single. The large terrestrial species are very dangerous, the others less so.

Definition: Head broad, flattened, rery distinct from narrow neck; a sharply-distinguished canthus. body. cylindrical or moderately compressed, monderately slender to stout; tail short to moderately lons.

Eyes small to moderate in size; pupils vertically elliptical.

Head scales: Supranculars generally present, internasals often distinct. sometimes separated by small scales: remainder of crown covered with small imbricate scales; enlarged canthals sometimes present. Laterally, second supralabial may make up anterior border of loreal pit or may be separated from it. Loreal scales present or absent.

Body scales: Dorsals keeled, in 19-3.; nonoblique rows at midbody. Ventrals 121-0.3: subeaudals single or paired, 22-83.

Urutu, Bothrops alternatus (Duméril, Bibron, and Duméril).

Identification: A brown lancehead with rounded blotches which are narrowly edged with rellow. ddults average 3 to 4 feet; occasional individuals exceed 5 feet.

Head brown with a distinctive marking on the crown. About 20 pairs of rounded lateral markings shaped like a French telephone
 whose apices nearly meet on the dorsal midline. Ground color brown, slightly lighter than blothes which have lighter centers. Belly white, spotted with brown or black.

Dorsals strongly lieeled, in 20-3.5 rows at midbody. Ventrals 167-181; subcaudals paired, 34-51.

Distribution: Along watercourses through southern Brazil, Uruguay, Paraguay, and northern Argentina. Rcmarks: This is a dangerous snake and it coanses a
large number of bites each year. Ordinarils the bite is not lethal, but it calnses severe local effects.

Figutre 37.-Vrutu, Bathrops altermatus, Dhoto by New lork Zoolonical society. (See also plate II, fig. .g.)

A polyvalent antivenin " Antibotropico" is prodnced by the Instituto Butantan, and by the Instituto I'inhieros (Brazil).

Amazonian Tree Viper, Bothrops bilineatus (WVied).

Ifentification: A green tree viper with a gellow lateral stripe. Ahults average $\ddot{-}+\mathrm{to}$ s 30 inches: maximum length about 3 feet.

Iniform bright green above, speckled with black in some individuals; a narrow rellow stripe or series of yellow spots on tirst row of dorsals. Tip of tail usually red or red-brown. Belly white, withont markings.
snout rounded; canthus rostralis sharp and slighty raised. Internasals large and in contact with one another: canthals large: i-s rows of scales between large supranculars. Dorsals strongly keeled, in 27-33 nonoblique rows at midbody. fewer posteriorls. Ventrals $19 \mathrm{~s}-28$: subeaudals $5!-71$, all or nearly all paired.

Disfribution: The Amazonian rexions of Brazil, British Guinea, Colombia, Bolivia. Beru. Eenador, and Venezucla.

Remarks: This is one of the most widely distributed of the prehensile-tailed tree vipers of south America. However, it does not appear to he a serions hazard anywhere and no specific antivenin is produced for the treatment of its bite.

St. Lucia Serpent, Bothrophs caribbaeus Graman. Identification: A pale gray or yellowish gray pit viper; the onty renomons snake on the West Indian island of St. Lucia. Arlults arerage 3 to $\&$ feet in length; occasional individuals are recorded at about 7 feet.

Head dark gras with a postorbital band that extends across the upper edge of the supralabials. Body blotches obscure, little darker than the ground color which is light gray, often with rust-red suffusion. Chin white or cream, belly rellowish with a few gray markings.

 padrua, 15t-76

Figure :3s. st. Lucia Serpent, Bothrops caribuacus. lhoto hy New York Zoological Society.

Remurk:s: This is a dangerous snake whose bite catuses severe local tissue damage.

For many years it was confused with the barba amarilla (B. atmox) of the mainland and the fer-de-lance (B. lanccolatus) of Martinique.

It is reported to have caused the death of several persons on the island. No specific antirenin is available for this species.

Jararaca, Bothrops jajaraca (Wied).
Identificution: An olive-green, brown-blotched pit viper with a rather long, but short-snouted head. Adults arerage 3 to \pm feet; occasional individuals approach if feet in length.

Crown of head dark olive, usually with some dark brown irregular markings which may be light-edged. A

Figure 39.-Jararaca, Bothrops jujurucu. Photo Wy New York Zoological Society.
 mathater of side of head light. Dbout ag patrs of lateral brown blotebes on the boty; they are well-defthed lateral triagios anterdorly but becobse rombler toward mbborly and quite brregular la shape pesterforly. Ground color olfor, grayish or brownish, lelly yellowIsh, blotehed with gray, often entirely gray posteriorly.

Drefrontals small, longer than broad, separated from one another by t-5 rows of small seates. Dorsals weakly keced, keels extending entire length of scakes, in 20-27 rows at midhody. Ventrals 17.0-216; subcandals $j=-70$, all or nearly all paired.

Distribution: Grasslands and open country throngh sonthern brazil, northeastern l'araguay and northern Argentina.

Remarks: This snake is easily confused with 18. atrox on the one hand and with $l s$, jararacussu on the other. The color patterns and scales of the snout region apmear to distinguish them. B. jujarera is one of the most common venomous snakes throughout its range. Irobably for that reason, rather than because of its renom quantity and toxicity, it is second only to the cascatiel (Crotalus durissurs) as a source of deaths from suakebite in the region.

Jararacussú, Bothrops jurarucusssu Lacerda.
Ilcntification: A dull-colored black and yellowish pit

Figure 40.-Jararacussú, Bothrops jararacussu. Photo by New York Zoological Society.
viper with a broad, lance-shaped head. Adults arerage 3 to 4 feet; maximum length about $51 / 2$ feet (Amaral, 1925).

Crown of head unicolor black and dark brown with dark-yellowish lines over the temporal regions which separate the black postorbital stripe from the dark color of the crown; side of head mostly yellowish. About 15 pairs of lateral upside-down U -shaped black body blotches may alternate with one another or oppose and connect across the back. Often much of back corered with irregular patches of dark pigment., leaving lateral blotches irregularly outlined with dark sellow. Belly yellow, irregularly blotched with dark brown or black.

Prefrontals (eanthals) broader than long, separated from one another by 1-2 rows of small scales. Dorsals
strongly keeled, keels tending to be tuberculate along back, in 23-27 rows at midbody, fewer posteriorly. Ventrals $170-186$; subcandals 41 66, all or nearly all paired.

Distribution: Near rivers and lakes in southern Brazil, eastern Bolivia, Paraguay, and northern Argentina.

Remarks: This is an amphibious species and may be found in the water. It is not a very common snake, but produces a very toxic venom in large amounts (averaging more than 100 mg . in a milking) ; it is one of four species of snakes which cause most fatalities from snakebite in Brazil. A common early symptom of its bite is blindness.

Antivenins (polyvalent) using the venom of B. jararacussu are produced by Behringwerke of Germany, Instituto Butantan and Instituto Pinheiros of Brazil, and the Instituto Nacional de Microbiologia of Argentina.

Fer-de-Lance, Bothrops lanceolatus (Lacépède).

Identification: A lancehead recognized by its dark truncated lateral blotches and high numbers of dorsals and ventrals; the only venomous snake on Martinique. Adults average $\&$ to 5 feet; occasional individuals attain lengths of about 7 feet.

Head brown with a sharply defined darker postorbital band that extends down to the corner of the mouth. Body gray, olive, or brown with an obscure series of $22-27$ hour-glass-shaped blotches down the back. Ventral surface white or cream with a few grayish or brown stipple marks anteriorly, more posteriorly.

Dorsals strongly keeled, in 31-33 rows at midbody, fewer (29) anteriorly and posteriorly (21-23). Ventrals 215-230; subcaudals paired, 56-67.

Figure 41.-Fer-de-Lance, Bothrops lanccolatus. The snake to which the name, Fer-de-Lance, rightfully belongs is found only on the island of Martinique. Photo by New York Zoological Society.

Distribution: Found only on the West Indian island of Martinique ; originally over the entire island but now restricted to the less inhabited forests.

Jararaca pintada, Bothrops nemviedi W'agler.

Identification: A distinctly-patterned tan or grayish pit viper with a distinctive pattern on the crown. Adults average "2 to 3 feet in length.

Crown of head light tan or brown with a series of distinct spots ; often a \mathbf{U}-shaped mark on the rear part of the head. the tro arms of the " U " sometimes connected with the body battern. Pattern geographically fariable but basically a paired series of small triangular or rhomboidal black or dark brown dorsal blotches that alternate or fuse across the back to form small \mathcal{X}-shaped markings. Rounded dark spots may fall between the main series on the midline and a lateral series of small spots alternates with the dorsal blotches. All of the

Figure 42.-Jararaca pintada, Bolhrops neutiedi. The "U" mark on the rear of the head is distinctive. Photo by Isabelle Hunt Conant.
markings mar be outlined with bright yellow. Ground color tan or light gray. Belly yellowish, some ventrals edged with gray.

Dorsals strongly keeled, in 21-27 rows at midbody. Ventrals 163-187; subeaudals 40-53, all paired.

Distribution: Grasslands and open country on the platean of southern Brazil, eastern Bolivia, Paraguay, and northern Argentina.

Remarks: This is a rather small suake but it ranges over a large area of southern South America. It is one of the major sources of snakebite in Arcentina.

Polyralent antivenins are produced by Behringwerke of Germany, and the Instituto Nacional de Microbiologia, Argentina.

CROTALIDAE: Genus Crotalus Linnaeus, 1758.

Rattlesnakes.
About 25 species of rattlesnakes are currently recognized. Most species are in the southwestern United

Hefinilion: Hesul hroal, sery distiact form Harrow

E:yess sumall; [mpils rertieally ellipticall.

 enlatraed (atuthal sobles often presernt other parts of crown eroveral with small soibles. Iaterallys, eye separ rated from sumpabbials by $1-弓$ rows of small scales.
louly scalles: Dorsals livelenl, with apical pits, in 193:3 nomohlidue rows at miduonly. Ventrals 132-20f: subcitulals $1: 3-45$, all single or with some terminal ones patient.

Cascabel, C'motulus dmoisvies Iimusuens.

Iflentifiention: The only true rattlesnalie in most of its ramge (except in Mexico). The series of large rhombie blotches (diamonds) down the back; stripes on the neck, atma the large mattle are distinctive body stout and slishtly compressed. especially anteriorly. Adults averase \& to $\overline{5}$ feet: maximum length about f feet.

Body brown or olive with $18-3$ a darker, light-edged rhomb-shaped markings down the back. Those on neek sometimes elonsate into stripes. Tail usually unicolor fark brown or biack. White or cream colored below.

Figure tis-Cascabel. Crotalus durissus. Photo courtesy Scicntific Amcrican. (See also plate I, fig. 3.)

Distribution: Dry areas, srasslands, and thorny scrub, from coastal eastern and southern Mexico southWard througl Central America, and throush eastern South America from northern Colombia to northern Irgentina.
 Fatthesmatios, athel is ome ot the most dangerous smakes In tho dmertans. 'Tho foxicity of the vernom viarles
 the dusin cathse ol death irom sbsticobite, it is extremely foxle' 'The venom of thls rattlosmake has minor tocal
 -lble blindmess, parabysis of tho nerk museles, eessathon of breathing and heartheat, and limally death.

This verom does not anpery to form adefuate antfboulfos in horsess so that enormous amounts of antivenin are needed to comateract the efferts of the bite of at suake of atverage dimensions. 'Ten ampules (100 mul.) Would appeat to be an atverage initial dose, and -O or more maty be used.

Dutivenins are produced by the Instituto lbutantan and Instituto I'inheiros, Brazil, and Wyeth, Inc., Lhilaflelphia.

Aruba Rattlesnake, Crotalus unicolor Lidth de . Teurde.

Irentification: d gray or mray-brown rattlesnake which is unicolor, or with a faint pattern of rhomb-

Figure 44.-Aruba Rattlesnake, Crotalus unicolor. This faded relative of the cascabel occurs only on the island of Aruba. Photo by New York Zoological Society.
shaped blotches (diamonds) down the back; the only renomous snake on Aruba Island. Body stout and somerhat depressed. Adults average 2 to 3 feet; maximum length a little less than 38 inches (950 mm .; Klauber, 1956).

Body gray or light gray-brown with 18-28 faintly darker rhomb-shaped blotches down the back; blotches sometimes almost indistinguishable. A lateral series of obsolete blotches that alternate with or oppose the dorsal series. Usually a distinct pair of parallel stripes on the rear part of the head; these may continue as stripes on the neck. White or cream-colored below.

Dorsals strongly keeled, in $25-27$ rows at midbody,
fewer posteriorly. Ventrals 150-169; subcaudals $20-31$. Distribution: Found only on the island of Aruba, in the Caribhean Sea, off the coast of Yeneznelat.

Remarks: This is a dwarfed and lisht-colored relative of the cascabel (crotalus durissus). It is not aggressire but ready to defend itself. Nothins is known of its venom but the close relationship with the cascabel suggests that it is capable of a dangerous bite in spite of its small size.

CROTALIDAE: Genus Lachesis Daudin, 1803.

Bushmaster.
A single species, L. mutus, is found in tropical America. It attains a length of 9 to 12 feet and is considered dangerons (see pp. 5t-.57).

Definition: Head broad. rery distinct from narrow neck; snout broadly rounded. no canthns. Ibody cylindrical, tapered, moderately stout; tail short.

Eyes small; pupils vertically elliptical.
Head scales: A pair of small internasals sequated from one another by small scales; a pair of narrow supracolars; other parts of crown covered with very small scales. Laterally, second suprababial forms anterior border of loreal pit, third very large; eye separated from sumalabials hy $4-5$ rows of small scalles.

Body scales: Dorsals heavily keeled with bulbous tubercles, feebly imbricate, in $31-37$ nonoblique rows at midbody, fewer posteriorly. Ventrals $200-330$; subcaudals manty pared, 32-50, followed by $13-17$ rows of small spines and at terminal spine (fig. 32).

REFERENCES

(See also General References)
AMARML, Afranio do. 1925. I General Consideration of Snake Poisoning and Oliservations on Neotropical Pit-Vipers. Contr. Harvard Inst. Tropical Biol. Med., 2: 6.4 p., 16 pls.
AMARAL, Afranio do. 1930. Lista remissiva
dos ophidios da regiao neotropica. Mem. Inst. Butantan, 4: 127-271.
DUNN, Emmett. R. 1944. Los genereos de anfibios y reptiles de Colombia, III. Tercera Parte: Reptiles; orden de las serpientes. Caldasia, 3 (12) : 155-224.
FONSECA, Flavio da. 1949. Animais peconhentos. Publ. Inst. Butantan, Sao Paulo. 376 p., 129 figs., 13 color pls.
II ($\mathrm{fE}, \mathrm{Al}_{\mathrm{p}}$ honse IR. 1965. Preliminary Account on Neotropical Crotalinae (Serpentes, Viperidae). Mem. Inst. Butantan :32:109-18t. pls. 1-20, maps 1-10.
IdVELLA, Jimes D.. olr. 196t. The Lesser Antillean liepresentatives of liothrops and ('onstrietor. Bull. Mus. ('omp. Yool., 1B2 (3) : $\because 45-27 \%$, figs. 1-5.

MOLE. R. R. 1924. The Trimidad suakes. Proc. \%ool. Soc. London: 235-278, pls. 1-10.
PE'TERS, James 1. 19fo, The sinakes of Eenador: A Check List and Key. Bull. Mus. (omp. Zool., 12! (9) : 491-541.
ROZEE. Janis A. 19\%\%. Revision de las corales (Serpentes: Elapidae) de Venezuela. Aeta Biol. Venezuelica, 1 (art. 17) : $453-500,4$ figs. (2 color).
Ro)ZE, Janis A. 19666. La Taxonomia y Zoogreogratiar de los ofidios de Venezuela. Universidad Central de Veneznela, Camacas. 362 pp . 79) ligs., 80 maps.

SANIDNER MONTHLLA, F. 1965. Manual de las serpientes ponzonosas de Venezuela. (P'ub). by author) Caracas. 108 p. 69 figs., 9 col. pls.
S.INTOS, Eurico. 1925. Infibios e repteis do Brasil (vida e costumes). 2nd ed. F. Briguiet © Cia., Rio de Janeiro. $2(62)$., 65 figs., 10 color pls.

Section 4

EUROPE

Definition of the Region:

Entire continent of Europe, European Russia (Iusssian Soviet Federated Socialist Republic) and the Mediterranean islands, the Ukranian SSR and the Autonomous Soviet Republics north of the Caucasus and west of the Volga River.

TABLE OF CONTENTS

Page
Map of the region 73
Introduction 73
Distribution Chart 72
Key to Genera 73
VIPERIDAE:
Fipera- 74
CROTALIDAE:
Agkistrodon 75
References 76
TABLE 8.-DISTRIBUTION OF POISONOUS SNAKES IN EUROPE*

INTRODUCTION

Europe has comparatively few species of native snakes. This reflects the generally cool, presentday climate, the scarcity of suitable habitats for snakes, and the geologic history of glaciation that eliminated all reptiles from much of the continent some 10,000 to 20,000 years ago. Poisonous snakes in Europe tend to be quite local and spotty in distribution, especially toward the north. The hardwood and evergreen forests that originally covered much of the continent were never good habitats for snakes. Centuries of intensive agriculture and more recent industrialization have further reduced the suitable habitats. In spite of this, poisonous snakes may be locally plentiful. In Scandinavia aud Finland, the European viper ranges slightly above the Arctic Circle-farther north than any other known species of snake. In Finland during the summer of 1961,163 snakebites were reported. One physician in Cornwall, England, saw 18 cases of adder bite between 1952 and 1905. The eastem Mediterramean region has the greatest number of renomons snakes and the most dangerous species.

All the European poisonous suakes are vipers and present a strikingly similar appearance. They are small to medium-sized snakes of moderately stout build with short tails. In distinguishing them from nonpoisonous snakes, note that the eye is separated from the upper lip shields by one or more small scales (except in the single species of pit viper 4 gkistrodon hatys) and the pupil is elliptical. In most European nonpoisonous snakes the eye touches the upper lip shiedds and the pupil is round. The only exceptions to both these rules are the little boas of the
genus Eryx; they are easily recognized by their small rentrals. In distinguishing one species of

riper from another, note particularly the shape of the snout and the presence or absence of enlarged shields on the top of the head. Body scales are kecled in all the European vipers.

The common ripers of Europe feed largely upon lizards and small mammals. They are all live-bearing.

Antivenins against venoms of the common vipers of Europe are produced by the Institut Pasteur, Paris; Behringwerke, Marburg-Lahn, Germany; Instituto Sieroterapico e Vaccinogeno Toscano, Siena, Italy; and the Institute for Immunology, Zagreb, Yugoslavia (Vipera ammodytes only).

KEY TO GENERA

1. A. Nine large crown shields (fig. 6) ; eye in contact with upper lip shields 2
2. Crown shields 6 or fewer or broken up into small scates; eye separated from lip shields 3
3. A. Loreal pit present (fig. 4) Agkistrodon
4. Loreal pit absent NP*
5. A. Ventrals extend full width of belly (fig. 9A) Vipera
B. Ventrals do not extend full width of belly (fig, 9B) NP
[^7]VIPERIDAE: Genus Vipera Laurenti, 1768.
Trme alders.
Elevers spectes are recoguland. Thbs is an esperially variable grobpe whth sume members that are smatl athd

 aro found from morthern Farasia throughont that conthent and into noth Jfrien. Ome spectes ranges into the bast lnelles (F. russelii), and two are found in east Jfien (see Remarks umber V°. supereiliaris).

Ihefiniton: Head broad, distinct from narrow neck: canthus distinct. Body cylindrical, varying from moderately slember to stout; tail short.

Leyes moderate in size to small; pupils vertically elliptical.

Head scalles: Variable: one species (1 ". Ursimii) has all 9 crown scutes, most species have at least the supraoculars, but even these are absent in one (V. lebefina) : head otherwise covered with small seales. Lateralls, hasal in contact with rostral or separated by a single enlarged seale (the nasorostral), eye separated from supralabials by $1- \pm$ rows of small scales.

Body scales: Dorsals keeled, with apical pits, in 1031 nonoblique rows at midbods. Ventrals rounded, $120-$ 180 ; subcandals paired. 20-64.

European Viper, T'ipera berus (Limnaeus).
Idcntification: Head distinct from neck but ovoid rather than distinctly triangular; snout blunt. flat, not upturned; top of head with 5 large smooth shields.

Ground color pale gray, olive or sellow to russet or brown, the darker colors generally in females. Down the entire length of the back runs a black or dark brown zigzag line rarely broken into spots for all or part of its length and even more rarely straight edged. Top of head behind eyes with a dark " \mathbf{N} "-or chevron -mark; belly pale gray with darker suffusion. Uniformly black or very dark brown individuals are seen especially in some mountainous remions.

Arerage length 19 to $2 \pm$ inches, maximum $3 \pm$ inches; females larger than males.

Distribution: The only poisonous snake of northern Europe where it is widely distributed; in central and sonthern Eurone largely confined to mountains where it occurs to at least 9,000 feet elevation. It ranges completely across northern Asia to the Russian island of Sakhalin and northern Korea. In the north usually found in dry open sunny places-moors, old fields, brushy hillsides and openings in the forest. In the south more prevalent on rocky hillsides and about the edges of mountain forests.

Remarks: Nocturnal during warm weather; diurnal in cool: has considerable tolerance for cold and may be seen basking near patches of snow. Disposition generally timid. but strikes quickly and repeatedly when cornered or suddenly alarmed.

Figure 45-Dead scales of European Viper, Vipera berus. The broken-up crown shields on the snout are characteristic of this species. (See also plate II, fig. 1.) Redrawn from Maki, 1931.

Asp Viper, Vipera aspis (Limnaeus).

Identification: Head more triangular than in European viper, snout slightly but distinctly upturned at tip; shields on crown fragmented, usually only 2 or 3 enlarged.

Color similar to European viper but generally more apt to be reddish or brown; pattern of dark spots more or less fused, sometimes forming zigzag band; dark head mark not well defined; belly dark gray with lighter flecks; underside of tail tip yellow or orange.

Figure 46.-Asp Viper, Vipera aspis. Photo by Isabelle Hunt Conant.

Size about the same as European viper, 18 to 24 inches; males average larger than females.

Distribution: The western part of southern Europe. Found mostly in hilly or mountainous country to an altitude of 7,800 feet in the Pyrenees.

Remarks: Disposition generally more sluggish than European viper. Venom of about the same toxicity.

Snub-nosed Viper, Vipera latasti Boscá.
Identification: Similar to the asp viper but snout more upturned and pointed, its anterior surface formed
only from the rostral ; shields of crown much fragmented and usually not symmetrical.

Color as in the other two species; zigzag dorsal line prominent and well defined.

Size about the same as the European riper.
Distribution: The Iberian leninsula and northwest Africa. Found in lowlands and at moderate elerations usually in open sandy or rocky terrain.

Remarks: Little known of the renom, but it is not believed to be a particularly dangerous species.

Long-nosed Viper, Vipera ammodytes (Linnaeus).
Identification: Most readily identified by the snout which terminates in a strongly upturned appendage, its anterior surface formed from several small scales; crown

Figure 47.-Long-nosed Viper, Vipera ammodytcs. Photo by New York Zoological Society.
covered by small scales of irregular size and arrangement.

Color ash-gray, yellow, pale orange, coppery or brownish; zig-zag dorsal line very prominent; pattern more vivid in male; head without distinct dorsal markings; belly yellow or brownish more or less heavily clouded with dark gray ; tail tip orange or reddish.

Average length 25 to 30 inches; maximum about 36 inches. Males are larger than females.

Distribution: Southeastern Europe and Asia Minor. Inhabits dry hilly country for the most part between 2,000 and 5,500 feet elevation. It prefers rocky slopes particularly where there are outcrops of limestone.

Remarkis: Largely nocturnal but may be actire by day in cool weather. Sometimes climbs onto bushes to bask in the sun. Rather sedentary and retiring in habits but quick to strike. It is generally thought to be the most dangerous of the European vipers. The renom is quite toxic and apparently varies considerably in composition over the range of the species.

Two large vipers just enter European territory, the Ottoman viper (Vipera xanthina) near Istanbul and the

Lerantine viper (Tipera lebctina) on some of the eastern Mediterranean islands. (For descriptions of these species, see page 111 and page 112.)

CROTALIDAE: Genus Agkistrodon Beauvois, 1799.

Moccasins and Asian pit vipers.

Twelre species are recognized. Three of these are in North and Central America; the others are in Asia, with one species, A. halys (Pallas) ranging westward to southeastern Europe. The American copperhead (A. contortrix) and the Eurasian mamushi and its relatives (A. hatys) seldom inflict a serious bite, but A. acutus and A. rhodostoma of southeastern Asia, as well as the cottonmouth (A. piscivorus) of the southeastern United States are dangerous species.

Definition: Head broad, flattened, rery distinct from narrow neck; a sharply-distinguished canthus. Bods cylindrical or depressed, tapered, moderately stout to stout; tail short to moderately long.

Eyes moderate in size; pupils rerticalls elliptical.
Head seales: The usual a on the crown in most species; internasals and prefrontals broken up into small scales in some Asian forms; a pointed nasal appendage in some. Lateralls, loreal pit separated from labials or its anterior border formed by second supralabial. Loreal scale present or absent.

Body scales: Dorsals smooth (in A. rhodostoma only) or keeled, with apical pits, in $17-27$ nonoblique rows. Ventrals 12--174: subeaudals single anteriorly or paired throughout, 21-68.

Pallas' Viper, Agkistrodon halys (Pallas).

Identification: The loreal pit distinguishes this species from all other snakes of Europe and central Asia. Presence of 9 large head shields and contact of at least one supralabial with the eye, distinguish it from other ripers of that region. The pit and generally viperine

Figure 48.-Pallas' Viper, Agkistrodon halys intermedills. Specimen from Uzbek, U. S. S. R. Photo by Sherman A. Minton. (Preserved specimen)

 wh kray crovabiands alfermatlog with spots ont the shdes or with crosintisuls antl spots fosithe to produce sar irregubar meework: betly vreatu to sollow wlth the black puasetathon espeedalls towared the tatl: top of liead with dark spot alowe exach ege ame at nape ; tif of tall sellowfsh. Averuge lenkth an to ax faches; maximam nbotht :Sis inches.

Dixtribution: A characteristic suake of the vast cenfral dsian steppe where it oceurs in grassland and desert; often abundant around rocky bluffs that probably are hibernathig dens. Range in Europe restricted to the region between the Volga and the Urals; found eastward to southern Siberia and Mongolia.

Remarks: Largely nocturnal; rests during day beneath stones or shrubs. Bites by this snake are not infrequent, but fatalities are rare.

This account deals chiefly with dgkistrodon h. halys, 1.h. caraganus, and A.h. intermedius. The races of A. hulys in the Far East are treated elsewhere.

REFERENCES

HELLMACH, W"alter. 1956. Dio Lurche und Kriechtiere Europas. Carl Winter: Heidelberg, pp. 1-166, pls. 1-68 (color), figs. 1-9. MERTEN゙S, Robert and H. WERMETII. 1960. Die Amphibien und Reptilien Eiuropas. Dritte Liste nach dem Stand vom 1. Januar 1060. Waldemar Kramer: Frankfurt-am-Main, xi +264 pp., figs. 1-45.
SCHIW LK/s, E. 1936. Untersuchungen uber Systematik und Verbreitung der europaischen und mediterranen Ottern. Behring-werk-Mitteilung: Marburg-Lahn, vol. 7, pp. 159-362, pl. 1.
TERENTJEV, P. V. and S. A. CERNOV. 1949. Apredelitelj Presmykajuscheichsja i Semnowodnych. [Distribution of Reptiles and Amphibians] Third Ed. [in Russian] Government Printing Office: Moscow, 339 pp., 123 figs., 37 maps.

NOTES

Section 5

NORTH AFRICA

Definition of the Region:

Includes the nations of Mauritania, Spanish Sahara, Mali, Niger, Morocco, Algeria, Tunisia, Libya, and Egypt (United Arab Republic).

TABLE OF CONTENTS

Page
Map of the region 79
Introduction 79
Distribution Chart 78
Key to Genera 79
ELAPIDAE:
Elapsoidea 80
Naja 80
Walterinnesia 81
VIPERIDAE:
Atractaspis 81
Bitis 82
Cousus 82
Cerastes 82
Echis ,
Vipera 81
References 84
TABLE 9.-DISTRIBUTION OF POISONOUS SNAKES IN NORTH AFRICA

The symbol X indicates distribution of the species is widespread within the country. Restriction of a species to part of n coun-
try is indicated appropriately $(S W=s o u t h w e s t, ~ e t c.) . ~ T h e ~ s y m b o l ~ ? ~ i n d i c a t e s ~ s u s p e c t e d ~ o c c u r r e n c e ~ o f ~ s a p e c i e s ~ i n ~ t h e ~ u n i t ~ w i t h-~$ out valid literature.

INTRODUCTION

Africa from the southern edge of the Sahara northward is a vast region where the dominant theme is heat and aridity. This is mitigated only along the Mediterranean coast, in high mountains such as the Atlas range, and along the great river valleys and oases.

The snake fauna contains few species partly because of the rigors of the climate, and partly because most of the desert is new and there has been insufficient time for the evolution and spread of a specialized desert snake fauna. The distribution of snake species in northern Africa is not well known. There are probably a number of tropical Λ frican species that invade locally along the large rivers in the southern part of the region. Only a few of the species are found primarily in the desert; the majority occur around zones of irrigation or natural water supply. This increases the hazard of snakebite to the rural
people; however, the incidence of such accidents is unknown. Egypt in the years 194148 reported

KEY TO GENERA

1. A. Crown of head covered with small irregular scales; pupil of eye vertically elliptical 7
B. Crown of head covered with large shields; pupil round or elliptical 2
2. A. Loreal plate present 3
B. Loreal plate absent 4
3. A. Lateral scales rectangular and oblique; top of head with dark chevron marking (plate VIII, fig. 4) Causus rhombeatus
B. Without the above combination of characters NP*
4. A. Eye very small, snout pointed, all subcaudals undivided Atractaspis
B. Without the above combination of characters 5
5. A. All dorsal scales smooth 6
B. Posterior dorsal scales keeled; anal plate divided Walterinnesia
6. A. Scale rows at midbody more than 15 ; hood seen in life Naja
B. Scale rows at midbody usually 13 ; no hood Elapsoidea
7. A. Lateral scales oblique with serrated keels 8
B. Lateral scales like dorsals 9
8. A. Subcaudals single; ventrals not keeled Echis
B. Subcaudals paired; rentrals keeled Cerastes
9. A. Ventrals extending full width of belly 10
B. Ventrals not extending full width of belly NP
10. A. Body pattern of chevron-shaped crossbands; nostrils dorsal Bitis
B. Body pattern not as above; nostrils lateral Tipera

[^8] is probably highers:

The most important poisomous smakes of north Arioat are vipers; wobas orede but aparently play is minor rolo in smakehite ancidents.

GENERIC AND SPECIES DESCRIPTIONS

ELAPIDAE: Genus Elapsoidea Bocage, 1866.

I frican enter emakes.
A single spectes (F . sunterallii) with 11 gengraphic paces is curconty recognzel (see p, 94). It rankes orer most of tropical and whthern ofrica exeept for the (ame region. It attains a lenuth of 3 to 4 feet and is phentialty danerons. However, it is slugeish and inoftemsive and bites only in self-tlefense. This species enters the southern part of this region (see plate VIII, tis. 3).

Definition: Head of moderate size, not distinct from neek: an indistinct canthus. Booly moderately slender, eglindrical; tail vers short.

Eves small ; pupils romad.
Head seales: The usual 9 on the crown; rostral enlarged, obtusely pointed; internasals short. Laterally, nasal in narrow contact with single preocular.
Body scales: Dorsals smooth and rounded, in 13 rows at midbody. Ventrals $135-184$; anal plate entire; subcautals paired (a few sometimes single) 13-29.

Maxillary teeth: Two large thbular fangs with external groove followed, after an interspace, by $2-4$ small teeth.

ELAPIDAE: Genus Naja Laurenti, 1768.

Coluras.

Six species are recognized; all are African except the Asiatic cobra, Yaja naja, and range throughout the African continent except for the drifting sand areas of the Sahara region. Thes are snakes of moderate (4 feet) to large (8 feet) size, with large fangs and toxic renom. The species X. nigricollis "spits" its venom at the eves of an aggressor; it is found in the southern part of the region of north Africa. The Egyptian cobra (Saju hajc) and the western subspecies of the Asiatic cobra (Naja naja oxiana) are found in the Near and Middle East region.
Definition: Head rather broad, flattened, only slightly distinct from neck; snout rounded, a distinct canthus. Body moderately slender, slightly depressed, tapered, neck capable of expansion into hood; tail of moderate length.

Eyes moderate in size; pupils round.
Head scales: The usual 9 on the crown; frontal short; rostral rounded. Lateralls, nasal in contact with the one or two preoculars.
Body scales: Dorsals smooth, in 17-25 oblique rows

 mostly mimed.
Masilhary teeth: Two rather harge thbular fangs with extermal growes followed, after an interspace, by 0-3 small tweth.

Egyptian Cobra, Nieju huje (Limacus).

Identificution: Body form typically cohra like-short wide head, not distinct from neck; body moderately stout but graceful with even taper and moderately long tail; scales smooth with dull shem, seale rows strougly oblique enpecially on forebody; amal pate entire; subcaudals paired.
A useful point in identification of cohras and cobralike venomous snakes (elapids) is the absence of the loreal shield so that the shield bordering or enclosing the mostril tonches the shield that horders the eye anteriorly (the preocular). The loreal is present in most nonpoisonons shakes, and absent most often in small burrowing or secretive types. The Exyptian cobra may be distinguished from other African cobras by the presence of small subocular scales separating the eye from the upper labials.

Color extremely variable. Adult suakes from Fegyt and Libya may be brownish yellow, dark brown, or almost black: the head and neck are almost always a little darker; below yellowish becoming suffused with

Figure 49.-Egyptian Cobra, Vaja haje. Photo by Isabelle Hunt Conant. (See also plate VIII, fig. 7.)
brown; dark bars across neck at level of hood. Young yellowish; head and neck black; body crossed by wide dark bands. Adult snakes from southern Morocco are black above; purplish red with black bars and mottling below.

A large cobra, maximum length about 8 feet; average 5 to 6 feet.

Distribution: Occurs throughout the northern threequarters of Africa exclusive of the rain forest; also found in the western and southern parts of the Arabian Peninsula.

Found in a great variety of habitats such as flat land with scrubby bushes and grass clumps; irrigated fields, rocky hillsides, old ruins and in the vicinity of villages.

It avoids extreme desert situations and also permanently moist ones. Like many snakes it often makes its home in abandoned rodent burrows.

Remarks: While there are reports of aggressive behavior by Egyptian cobras, this is exceptional. They seem to be rather timid snakes and often make little effort to defend themselves. The hood is not so wide as in the Indian cobra.

The cobra trpe of defense with the bods raised high off the ground and neck spread is impressive and helpful in recognition of these snakes when they are alive. It is important to remember, howerer, that cobras may bite without spreading the hood and occasionally may spread the hood without rearing up the forebody. It should also be noted that many unrelated nonpoisonous snakes in various parts of the world spread the neck and forebody.

The renom is of about the same degree of toxicity as that of the Indian cobra. If Cleopatra really used one of Egypt's snakes as an instrument of suicide, this species would have heen a wise choice. Antivenin against renom of this cobra is moduced by the Institut Pasteur, Paris, and Behringwerke, Marburg-Lahn, Germany.

This cohra is the sacred suake (Uraens) of ancient Egrpt and is probably the smake kmown as asp to the classical writers of Greece and Iome.

ELAPIDAE: Genus Walterinnesia Lataste, 1887.

Desert black snake.

A single species, W. acopptia, is known from the desert regions of Exypt to Iran. It is relatively large, 3 to $\&$ feet, and is probably a dangerous species.

Definition: Head relatively broad, Hattened, distinct from neck: snout broad, a distinct canthus. Body crlindrical and tapered, moderately slender; tail short.

Eyes moderate in size; pupils round.
Head scales: The usual 9 on the crown: rostral broad. Laterally, nasal in contact with single elongate preocular.

Body scales: Dorsals smooth at midbodr, feebly keeled posteriorly, in 23 rows at midbody, more (27) anteriorly. Ventrals 189-197; anal plate divided; subcaudals 45-48, first 2-8 single, remainder paired.

Maxillary teeth: Two large tubular fangs with external grooves followed, after an interspace, by 0-2 small teeth.
Desert Black Snake, Wralterimnesia aegyptia Lataste.

Identification: A moderately stout suake with short tail and small head not distinct from neek: crown with large shields. The following combination of scale characters is useful in distinguishing this species from nonpoisonous suakes and cobras: 1. Loreal plate absent; 2. Dorsal scales smooth anteriorly, keeled posteriorly; 3. Anal plate divided; 4. Some single subcatidals, although most are paired.

Adults uniformly black or very dark brown or gray
abore, a little paler ventrally. Young, in Iran at least. hare narrom light crossbands.

Arerage length 3 to $31 / 2$ feet; maximum a little orer 4 feet.

Distribution: Egspt and the nations of the Near and Middle East. Reported most frequently from gardens, oases and irrigated areas; also inhabits barren rocky mountain hillsides and sandy desert with sparse bushes. A rather rare snake.

Remarks: Does not rear up or spread hood but when annoyed may strike more than half its length. The high gloss of its scales helps to distinguish this species from the duller Egyptian cobra.

Toxicits of the renom for experimental animals is about the same as that of the Indian cobra but quantity is considerably less (about 20 mg . rs. 50 to 100 mg .). There is no antirenin arailable.

Figure 50.-Desert Black Snake, Thalterinnesia acgyptia. The highly glossy scales help to differentiate this snake from other dark species within its range. Photo courtesy Standard Oil Company.

VIPERIDAE: Genus Atractaspis Smith, 1949.

Mole vipers.
Sixteen species are currently recognized. All are African excent for A. cngaddensis Haas (which ranges from Egspt to Israel) and A. microlcpidota (which is found

 small statios, lows than is foet In lenketh. Howerer, they

 thone pheking theot up or stepplag on them with bare foet (see (1) \{19)

Wefinition: Hoarl short able conleal, bot distlact from
 bonly eylimbriat, shember in small indidhuals, stout in large ones: tall short, emblise in a distinct spime.

Feyes very small; puples romme.
Head soales: The nsuat ! erown seales, rostral enlared, extembing between intermasals to some degree, uften pointed: frontal large and broad, supraoculars small. Laterally, nasal in contact with single preoculax (bu loreal), usuatly one postocular.

Bony scalles: Dorsals smooth without apical pits, in 19-37 nonobligue rows at midbody. Ventrals $168-370$; amal plate entire or divided (the only viperid suake with divited amal plates) ; subcabdals single or pared, 18-39.

VIPERIDAE: Genus Bitis Gray, 1842.

Ifrican vipers.

Ten species are found in tropical and sonthern Africa. They include the largest of the true vipers (Viperidae) as well as some small and moderately sized ones; all of the members of the genus are dangerous, some of them exeremly so. The puff adder, litis arictons, is found widely throngh the rexion (see p. 101).

Dcfinition: Head broad and very distinct from narrow neck; snout short, a distinct canthus. Body somewhat depressed, moderately to extremely stout; tail short.

Eyes small: pupils vertically elliptical.
Head scales: No enlarged plates on crown, covered with small scales. Some species hare enlarged and erect scales on snout or above ere. Laterally, rostral separated from nasal by 0 (in B. worthingtoni) to 6 (in some B. nasicornis) rows of small scales, eve separated from supralabials by $2-\overline{5}$ rows of small scales.

Body scales: Dorsals keeled with apical pits, in 2146 nonoblique or slightly oblique rows at midbody, fewer anteriorly and posteriorls. Ventrals rounded or with faint lateral keels, 112-153; subcaudals paired, laterally keeled in some species, 16-37.

VIPERIDAE: Genus Causus Wagler, 1830.

Night adders.

Four species are found in tropical and southern Africa. None attains a length of over 3 feet. The fangs are relatively small, and the renom is rather mildly toxic. They look surprisingly like nonpoisonous snakes. Night adders are not considered dangerons to life but their bite is painful and renomons. The rhombic night adder, C. rhombcatus, enters the sonthern part of this region (p. 102).

Definition: Hend moderate in stze, fatrly distlnet from neek, su ohtuse mathons. Body eylimitatal or shghty depressed, moderately slender; tatil short.
byes moderate in slace ; maths rommi.
Hend seales: The usual 9) crown seales: mostral broad, somethes polnted and upturned; frontal long. supraoculars large. Laterally, a loreal present, separatfig uasal ath preoculars; stboculars present, separating eye from labials.

Body scales: Dorsals smooth or weakly keeled, with apical pits, in lin-2y oblique rows at midbody, fewer (11-14) posteriorly. Ventrals rounded, 109-15.); subcandals single or paired, 10-33.

VIPERIDAE: Genus Cerastes Laurenti, 1768.

Horned vipers.

T'wo species are recognized; both are restricted to the desert regions of northern Africa and western Asia. Neither is a large species; the bite is painful but msmally not serions.

Definition: Head broad, flattened, very distinct from neek; snout vers short and broad, canthus indistinct. Body depressed, tapered, moderately slender to stout; tail short.

Eyes small to moderate in size; pupils rertically elliptical.

Head scales: Head corered with small irregular, tubercularly-keeled scales; a large erect, ribbed hornlike scale often present ahove the eye; no other enlarged seales on crown. Laterally, nasal separated from rostral by $1-3$ rows of small seales; eye separated from supralabials by $3-\overline{6}$ rows of small scales.

Body scales: Dorsals with apical pits, large and heavily keeled on back, smaller laterally, oblique, with serrated keels, in $23-3.5$ rows at midbody. Ventrals with lateral keel, $102-16 \%$; subcaudals keeled posteriorly, all paired, 18-42.

African Desert Horned Viper, Cerastes cerastes (Limnaeus).

Ilentification: Many individuals of this species have

Figure 51.-African Desert Horned Viper, Cerastes cerastes. Photo by Zoological Society of San Diego.
a long spinelike horn above the eye; in some, however, this is short or absent. Body form is typically viperine with wide triangular head, thick body, and short tail tapering abruptly behind vent. Top of head covered with small scales; subcaudals paired; rentrals feebly keeled; 15 or more scales across top of head; more than 130 ventrals.

Ground color sellowish, pale gras, pinkish or pale brown with rows of dark brown, blackish or bluish spots that may fuse into crossbars; below whitish, tip of tail black.
Average length 20 to 25 inches; maximum about 30 inches.

Distribution: The Sahara region and Arabian Peninsula; parts of the Middle East.

Inhabits deserts where there are rock outcroppings and fine sand, often in very arid places; however, oases are not avoided. It usually hides in rodent holes and under stones.

Remarks: Chiefly active at night. Like many desert snakes, it often uses the sidewinding trpe of locomotion. When angered it rubs inflated loops of its body together to make a rasping hiss as does the saw-scaled viper (Echis).

It is not a particularly bad tempered or dangerous snake, although it is inclined to stand its ground if disturbed. It causes some snakebite accidents, but fatalities are rare. Antivenin is produced by the Institut Pasteur, Paris, and the Institut Pasteur d'Algerie, Algiers.

Sahara Sand Viper, Cerastes vipera (Linnaeus).
Identification: Very similar in appearance to the desert horned riper except that the horns are absent ; $0-13$ scales across top of head; fewer than 130 ventrals.

Color much as in the horned viper but tending to be more faded with spots less well defined; tip of tail black in female, light in male.

Average length 13 to 18 inches; maximum about 22 inches; females larger than males.

Distribution: Eastern and central Sahara to Israel in sandy desert.

Remarks: Found only in tracts of fine loose sand into which it buries itself when alarmed; usually spends the day buried in sand at the base of a shrub; active at night. In places where this viper is common, the horned viper is rare or absent and rice versa. Care should be taken to differentiate this snake from Echis carinatus, a much more dangerous snake.

It is not a very dangerous snake; the venom is small in amount and not highly toxic. Antivenin is produced by the Institut Pasteur, Paris, and by Behringwerke (Polyralent).

VIPERIDAE: Genus Echis Merrem, 1820.
Saw-scaled vipers.
Two species are recognized. One (E. coloratus) is restricted to eastern Egypt, the Arabian l'eninsula, and

Israel. The other (E. carinatus) ranges from Ceslon and southern India across western Asia and north Ifrica southward into tropical Africa. Although neither attains a length of 3 feet, they posses a highly toxic renom and are responsible for many deaths. When disturbed they characteristically inflate the body and produce a hissing sound by rubbing the saw-edged laternal scales against one another. This same pattern of beharior is shown by the nonpoisonous egg-eating snakes Dasypeltis.

Definition: Head broad, very distinct from narrow neck; canthus indistinct. Body cylindrical, moderately slender; tail short.

Eyes moderate in size; pupils vertically elliptical.
Head scales: A narrow supraocular sometimes present; otherwise crown covered with small scales, which may be smooth or keeled. Rostral and nasals distinct. Laterally, eye separated from labials by $1-1$ rows of small scales; nasal in contact with rostral or separated from it by a row of small scales.

Body scales: Dorsals keeled, with apical pits, lateral seales smaller, with serrate keels, in $27-37$ oblique rows at midbody. Ventrals rounded, $132-205$: subcaudals single, 21-5ะ.

Saw-scaled Viper, Echis carinatus (Schneider).
Identification: Head short and wide, snout blunt; body moderately stout; scales on top of head small, keeled; scales on side of body strongly oblique, the keels with minute serrations; subcaudals single.

Color pale buff or tan to olive brown, chestnut or reddish; midline row of whitish spots; sides with narrow undulating white line; top of head usually shows light trident or arrowhead mark with 3 prongs directed posteriorly and one anteriorly; belly white to pinkish brown stippled with dark gray.

Average length 15 to 20 inches: maximum about 32 inches; sexes of about equal size.

Figure 52-Saw-senled Viper, Echis carinatus. Typical defensive pose. Photo by New lork Zoological Society.

Distribution: Almost the entire Afro-Asian desert belt from Morocco and Ghana to the southern provinces of Russian A sia and drier parts of India and Ceylon.
 sumbe deate fo dry sorub forest amb from seatomst fo
 math of liss rambe.

Liemurkis: Ahnost wholly mocturmal in dry hot weather; weasfomally dharmal in eool wather: duriat ratny seasom otten cllmbs iato bushes. Vsmally tries to excape when ebobuntered, but is very alert and irritable. Assumes charmeteristhe figures coll, ruhbing fathated boples of body together to make a distlactive sizaling nolse. strikes puickly and repeatedly with considerable reath for a small suake.

This little viper is an important canse of smakebite acchents and fatalities almost everywhere that it is fonme. The venom seems to be musually toxic for man, and death has been recorded following the hite of a snake 10% inches lons. Hemorrhages, internal and extermat, are a prominent part of the clinical picture. Serious late complications are frequent, and death may oceur 12 to 16 days after the bite.
saw-scaled viper antivenins are produced by the Institut l'asteur, Paris; Behringwerke, Marburg-Lahn, (Germany: Central Research Institute, Kasauli, India; Haffine Institute, Bombar, India; Tashkent Institute, Moscow : State Razi Institute, Tehran, Iran; and the South Ifrican Institute for Medical Research, Johannesbur:

VIPERIDAE: Genus Vipera Laurenti, 1768.

True adders.
Eleven species are recognized. This is an especially variable group, with some members that are small and relatively innocuous (e.g., V°. berus) and others that are extremely dangerous (\mathbf{V}. lebetina, V. russelii). They are found from northern Eurasia throughout that continent and into north Africa. One species ranges into the East Indies (V. russelii), and two are found in east Africa (spe Remarks under V. superciliaris). Both the sumbnosed riper. V. latasti, and V. mauritanica are found in this region (see p. 74).

Doflnilion: Beal hront, distinct from barrow neck;
 ately slember to stout ; tatl short.

Diges moterate in size to smabl pupits vertleally el-

Head seates: Vatable; one spereles (V ". Itrsinii) has all : crown soltes, most sheceses have at least the supmobulars, but even these are absent in obe (V. Iebe(illa) : hend ofterwise covered with small seales. Laterally, nasal in contact with rostral or separated by a single enlatged scate (the nasorostabl), eye separated from supratabials by $1-1$ rows of smatl seates.

Booly scales: Dorsals kecled, with apheal pits, in 19-31 nonoblique rows at midbody. Ventrals rounded, $120-180$; subcandals maired, 20 - $\mathrm{f}+\mathrm{t}$.

Sahara Rock Viper, Vipera muuritanica (Gray). Identification: Closely related to V. lebctina of the Near and Midde Last. Ahsence of serrated leels on the lateral scales or keeled ventrals distingnishes it from cerastes; paired subctudals and lack of serrated keels distinguishes it from Eehis; a blunt rather than upturned snout distinguishes it from Vipere latasti; the lateral position of the nostrils, more slender body and fewer than 27 scale rows at midbody distinguishes it from the puff adder (Bitis arietans).

Ground color grayish, reddish, or brown with series of oval or rectangular dark blotches that tend to fuse forming the zigzag stripe of many European and Asian vipers; belly pale extensively clonded with dark gray. Its pattern is much like that of the Palestine (V, x. palaestinac) riper (see page 112).

Average length 3.5 to 45 inches.
Distribution: The northwestern part of the Sabara region from Spanish Sahara to Tripolitania (northwest Libya). Found on hillsides with serubby vegetation and large flat stones.

Remarks: Hides by day in rock crevices and mine tunnels; most active about twilight.

It is considered a dangerous species. Specific antivenin is produced by the Institut Pasteur d'Algerie, Algiers.

REFERENCES

BONS, J. and B. GIROT. 1962. Cle Illustree des Reptiles du Maroc. Trav. Inst. Sci. Cherifien Ser. Zool. No. 26, p. 1-62, figs. 1-15. KRAMER, Eugen and H. SCHNURRENBERGER. 1963. Systematik, Verbreitung und Okologie der Libyschen Schlangen. Rev. Suisse de Zool., vol. 70, pp. 453-568, p1s. 1-1, figs. 1-13.
MARX, Hymen. 1956. Keys to the Lizards and

Snakes of Egypt. Research Rpt. NM 005 050.39 .45 , NAMRU-3, Cairo pp. 1-8.

SAINT-GIRONS, H. 1956. Les Serpents du Maroc. Var. Scient. Soc. Sci. Nat. Psyc. Maroc, vol. 8, pp. 1-29, pls. 1-3, figs. 1-9.
VILLIERS, Andre. 1950. Contribution a l'etude du peuplement de la Mauritanie. Ophidiens. Bull. Inst. Francais d'Afrique Noire, vol. 12, pp. $981-998$, figs. 1-2, tables.

Section 6

CENTRAL AND SOUTHERN AFRICA

Definition of the Region:

All of Africa south of the Sahara Desert region. The northern borler of this huge area coincides with the southern boundaries of Mauritania. Mali. V'iger and Chad: amd with the northern boumdrry of the s'uden. Maduguscer: off the past const. has no repnomous smalies.

TABLE OF CONTENTS

l'age
Map of the region 87
Introduction \therefore
Distribution Chart 86. 85
Key to Genera 8)
COLUBRIDAE:
Disphotidus 90
Thelotornis 91
ELAPIDAE:
Aspidelaps 91
boulengerina 91
Dendroaspis 92
Elaps 94
E'lapsoidea 94
IIemachatus $9+$
Saju 95
P'rathriju ! 7
Pseudohaje 97
VIPERIDAE:
Adenorhinos. 98
1 therix !
1 trectorapia !!!
Bitis 100
Cousus 102
Echis 103
l"iper" $10: ;$
References 103
TABLE 10.-DISTRIBUTION OF POISONOUS SNAKES OF CENTRAL \& SOUTHERN AFRICA

INTRODUCTION

The poisonous snake fauna of central and southern Africa is a large and diverse one. There are no renomous terrestrial snakes on Madagascar, off the east coast, and only occasionally does a lone sea suake (Pelamis) wash ashore there or along the eastern coast of the mainland. However, there are records of sea snakes from as far south and west as Capetown, although there appear to be no reports of any person having been bitten in African waters by sea snakes.

Other than the sea snakes, the Ifrican poisonous snakes belong to three families, the Colubridae, the Elapidae, and the Viperidae. Africa is the only region where colubrid snakes are considered dangerously venomons, but here there are two tree snakes, the boomslang (Dispholidus) and the bird snake (Thelotomis), that have proven to be capable of inflicting lethal bites.

The elapids include burrowing snakes, some of which (e.g., Elap.s) are so small as to be of little concern. However, there are many dangerous terrestrial species as well as a number of specialized arboreal kinds (Pseudohaje, Dendroaspis). The most terrestrial of the mambas, Dendroaspis polylepis, the black mamba, attains a length of about it feet and is one of the most dangerous snakes in existence. Other especially dangerous terrestrial species are the Egyptian cobra (Naja haje), which has a wide range through central Ifrica, the spitting cobra (Xaja nigricollis), also with a wide range, and the yellow cobra (N. nivea) and ringhals (Hemachatus) of southern Ifrica.

The vipers are on equally diverse group. A genus of burrowing mole vipers (Atractaspis) is found throughout the region. Even though most of these do not exceed 2 feet in length, they are capable of inflicting dangerous bites. Some of the central African terrestrial vipers are the largest members of their family : the massive Gaboon viper (Bitis gubonica) exceptionally attains a length of 6 feet, with fangs almost 2 inches long. In addition there are relatively small desert vipers in the temperate south. However, the most widespread, the most commonly seen, and probably the greatest killer of man is the common puft' adder (Bitis arietans). The bush ripers (Athepis) do not appear to be am important danger.

With such a wealth of dangerously renomous snakes, one would expect snakebite to be an important cause of death in Africa. However, the few statistics available do not give this impression. The reported incidence of death from

Map T. -sertion di. contral and southern Ifrica.
snakebite is much lower than in the tropical countries of the Isian mainland. Whether this is a true picture or if it is distorted by poor reporting is as yet unknown.

The vipers of the genera bitio. Echis, Atheris, and Tipera have the common attributes of venomous snakes-broad distinct head and eyes with vertically elliptical pupils. However, this is not true of the night adders (Causus), the mole vipers (Atractaspis), or the various elapid and dangerous colubrid species. 'These have no general characteristics that set them off from harmless snakes. However, poisonous smakes make up less than a quarter of the snake fama throughout the region and it is not too difficult to leam the renomous kinds in any one area.

Many of the elapid species are cobras (Naja) or cobra-like kinds, and while a cobra minding its own business looks rery much like any other snake, a disturbed cobra will quickly spread a hood-which is a plain and distinctive warning. Eren some of the elapids without well-developed hoods (e.g., the mambas, Dendroaspis) will flatten the neck if disturbed, and some which do not resemble cobras in any way (e.g., Aspidelaps) will flatten the neck and raise the anterior part of the body in the familiar cobra stance.

Poironous Snoters of tho World
TABLE 10.-DISTRIBUTION OF POISONOUS SNAKES OF CENTRAL \& SOUTHERN AFRICA (CGntinued.

KEY TO GENERA

1. A. Crown of head covered with small irregular scales; pupil of eye vertically elliptical 15
B. Crown of head with nine large regular plates; pupil of eye various shapes 2
\therefore A. Loreal scale absent; preoculars in contact with nasal or separated by downward extension of prefrontal 6
B. Loreal scale(s) present, separating preoculars from nasal 3
2. A. Pupil of eye horizontally elliptical Thelotornis
B. Pupil of eye romud 4
3. A. Eye separated from supralabials by row of subocular scales Causus
4. Eye in contact with supralabials 5
5. A. Dorsals distinctly keeled, in 17-21 rows at midbody_--.-. Disphotidus
B. Dorsals smooth, in 13-15 rows at midbody Pseudohaje
6. A. Preoculars (3) widely separated from nasal; prefrontals expanded laterally to touch labials Dendroaspis
B. Preoculars (1 or 2) in contact with nasal 7
7. A. Rostral very large, concave below, separated from other scales on sides. Aspidelaps
B. Rostral not concave below, not separated from other scales 8
8. A. Dorsals distinetly keeled Homarlutus:
B. Dorsals perfectly smooth 9
9. A. Eye very small; frontal more than twice as broad as supraoculars Atractaspis
B. Eye small to very large; frontal not twice as broad as supraoculars 10
10. A. Tail moderate to long; more than 41 subcaudals 13
B. 'Tail short; fewer than 42 subeaudals 11
11. A. Rostral enlarged, obtusely pointed; dorsals in 13 rows at midbody Elapisoidea
12. Rostral normal, rounded; dorsals $15-17$ rows at midbody 12
1巳. A. Anal plate divided; dorsals 15 throughout Elaps
13. Anal plate entire; dorsals 15) -1% at midbody, more on neck, fewer posteriorly Paranaja
14. A. Eye very large; dorsals $13-15$ rows at midbody Pseudohaje
B. Eye small to moderate; dorsals 17 or more at midbody 14
15. A. Dorsal pattern of $3-24$ distinct dark crossbars on lighter ground color; 3-4 small teeth on maxillary bone_--- Boulengerina
B. No such pattern; 0-2 (rarely 3) small teeth on maxillary bone Naja
16. A. Lateral seales with serrate keels 18
B. Lateral scales not serrately keeled 16
17. A. Subcaudals paired 19
B. Subcaudals single 17
18. A. Fewer than 30 subcaudals; fewer than 130 ventrals Adenorkinos
B. More than 30 subcaudals; more than 130 ventrals Atheris

KEY TO GENERA (Continued)

```
1s. A. Ventmals with lateral keel; subeaudals paired .. .. Vermates
```



```
19. A. Rostmal in contact with masal, or sepmated from it by a
```



```
    B. Rostal sepamated from masal by 1 or more rows of
        small seales
        Bitis*
    -1: Wrthingloni, with the masal In contact with rostral, slagle subcatudals, and lateral kefls
-' the ventrals, whll not key out properl!
```


GENERIC AND SPECIES DESCRIPTIONS

COLUBRIDAE: Genus Dispholidus Duvernoy, 1832.
Boomslang.
A sinste species, $/$). (thmus Smith. This snake, fomd only in tronical and southern Ifrica, is the most danperons member of the family Colnbridae.

Definition: Head oval but distinct from slender neck: crown of head comvex. Snout short with a distinct canthus. Body slender and elongate, moderately compressed; tail lons and slender.

Eyes very large: pupils round.
Head scales: The usual 9 on the crown. Laterally, a single loreal scale separates the nasal from the one or two preoctars.

Body scales: Dorsals marrow, distinctly keeled, and with apical pits: in $\mathbf{1 6}$-21 oblique rows at midbody, more (21-2.) anteriorly, fewer (13) posteriorly. Ventrals of normal size, obtusely angulate laterally, 161-201; anal plate divided (Like most "present or absent" scale characteristies, this is not true $\mathbf{1 0 0}$ percent of the time; the amal plate is rarely entire. The question of identification of a boomslang with an entire anal plate caused the death of a noted herpetologist. Karl P. Schmidt, in 1957. Sce Pope, 10) s) ; subeaudals paired, $87-131$.

Maxillary teeth: I series of $\mathbf{i}-8$ small subequal teeth followed, after a short interspace, by a very long grooved fangs.

Boomslang, Dispholidus typmes Smith.

Ifcutificution: The boomslang does not look much different from many other tree-dwelling snakes which inhabit its range and, of course, it is not always in a tree. Howerer, the immocmons green bush snakes (Philothammus) have smooth scales, and keeled and notched rentrals, while the dangerous mambas (Dendroaspis) have a much longer and narrower head. lack a loreal scale, and have smaller eyes. Adult boomslangs average t to of feet, with the record length being "a little over (f feet."

Color varies from almost black to almost unicolor green; no blotches or distinct spots. Individual dorsal scales may be rellow, brown, or green, often with black on the margins. Ventrals black to greenish white. de-
pending on dorsal color. No distinct head pattern.
Distribution: Open savamah and brushy country throughout tropical and southern Sfrica; not found in

Figure 53. Boomslang, Dispholidus typus. Photo by Roy Pimnes and National Zoo, Washington, D.C. (See also phate VII, figures 1,4 ; plate VIII, figure 2.)
rain forest regions nor in true desert.
Remarlis: This suake is not aggressive and will quickly make for the nearest tree or bush if surprised on the ground. In its arboreal habitat it disappears quickly. Howerer, if cornered or restrained, it inflates its neck to more than double its normal dimensions. This exposes the skin between the scales of that region, which is often brightly colored. If its bluff is unsuccessful, the boomslang will bite.

Although it is a rearfanged colubrid snake, the boomslang has relatively long fangs and its venom, though in small quantities, is more toxic, drop-for-drop, than that of African cobras and vipers. The venom causes severe internal bleeding; every mucous membrane may ooze blood; a number of deaths have been reported. (Pope, 19.8. .)

A specific antivenin (Boomslang) is produced by the South African Institute for Medical Research, but it is in short supply and is usually held by them for severe cases that come to their attention.

COLUBRIDAE: Genus Thelofornis Smith, 1849.

Bird snake.
A single species, T. kirtlandii (Hallowell). The bird suake is restricted to tropical and southern Africa. Other than the boomslang of the same region, it is the only species of colubrid, rear-fanged snake that is known to canse serious injury, and occasionally death.

Dcfinition: Head elongate, flattened and distinct from neck; a distinct and projecting canthus which forms a shallow groove below it on the side of the snont. Body slender and elongated, crlindrical; tail long.

Eyes large; pupils horizontally elliptical (keyholeshaped).

Head scales: The nsmal 9 on the crown: internasals large; parietals bordered posteriorly by 3 large scales. Laterally, 1-3 loreal scales separate the nasal from the preocular.

Body scales: Dorsals narrow, feebly keeled, with apical pits, in 19 oblique rows anteriorly and at midbody, fewer (11-13) posteriorly. Ventrals rounded, $147-189$; anal plate divided; subcaudals paired, 131-175.

Maxillary teeth: A series of $11-16$ small teeth which gradually increase in length followed, after a short interspace, by 3 long grooved fangs.

Bird Snake, Thelotomis kirtlandii (Hallowell).
Identification: This slender-snouted tree snake is most easily recognized by its long, flat-crowned head with shallow lateral grooves that extend forward from the eyes. Its eyes are large and have horizontally elliptical pupils. There are usually two loreals, one behind the other, and the seales on the sides of the body

Figune Et-Bird Snake, Thelotornis hirtlandii. Photo by Zoological Society of San Diego. (See also plate VIII, fig. 1.)
are long and narrow, almost rectangular in shape. Adults average about 4 feet; record length $51 / 2$ feet.

Body ashy gray to pinkish brown above, unicolor or with poorly-distinguished blotches and crossbands. Underneath, the color is brownish or grayish, hearily
speckled with brown. Head unicolor green, pinkish, or purplish brown above, flecked with dark brown or black; occasionally a l-shaped design on back of head; a dark band extending from behind ese obliquely onto neck.

Distribution: The tropical forests and sarannah regions of central and southern Africa, southward to the Transvaal in the east and to central South-West Africa in the west.
hemarks: This snake seldom attempts to bite; nevertheless, its highly toxic renom has caused a few fatalities. When molested it assumes a threatening attitude and inflates its neck greatly, mainly in a rertical direction. This brings to wiew a bold pattern of black crossbands on a light background.

So antivenin is produced for this snake.

ELAPIDAE: Genus Aspidelaps Fitzinger, 1843.

shield-nose snakes.

Two species are recognized; both are restricted to southern Africa. Tley are small semiburowing snakes with a specialized snout. Nthough ther possess relatively large fangs, neither species attains a length of over 30 inches and they are not considered dangerous.

Definition: Head short and onty slightly distinct from neck; a broad smout moditied for burrowing ; canthus indistinct. Body erlindrical or somewhat depressed, stout ; tail short, obtusely pointed.

Eses moderate in size; pupils round or verticalls elliptical.

Head sompe: The nsual 9 on the crown: rostral very large, concave below, curred backward over snout, separated from other seales on sides; prefrontals very short. Laterally, nasal in broad contact with single preocular.

Body scales: Dorsals smooth or faintly keeled (in A. scutatus) in 19-23: oblique rows anteriorly and at midbods, fewer (15) posteriorls. Ventrals 110-172; anal plate entire; subcandals paired, "0-38.

Maxillary teeth: Two rather large tubular fangs with external grooves: no other teeth on the bone.

ELAPIDAE: Genus Boulengerina Dollo, 1886.

Water cobras.
Two species are recognized; thes. are found in central Africa from Nrasaland to the Congo region. They are large snakes, attaining lengths of orer 8 feet. They are not aggressive but are considered dangerous.

Definition: Head short, distinct from neck; an indistinet canthus. Body cylindrical and moderately slender; neek capable of being spread into a hood; tail of moderate length, tapering.

Eyes small; pupils round.
Head scales: The usual 9 on the crown: frontal small. Laterally, nasal in contact with single preocular.

Body scales: Dorsals smooth, in 17-23 oblique rows at midbody, the same number or more (16-25) anteri-

Paisonous Snakes of the World

 wate emtle: : shlobatals patreal, dif-su

Mavillary teeth: 'Iwa large thbular fames with es
 feeth

Banded Water Cobra, limulemmerima amumlalt! (Bumhholz and I'otors).
 is always fonme la or near water. It is especially common alonge some of the shures of Lake Tankuyika. The westorn rate (f . f . (thuntlatia) has a series of $21-21$ marrow black cossbable on at bown or tan backeround ; the eastern subsjerifes (1 B. chmulutu stormsi Dollo) has only $3-\overline{5}$ such batuds on the neek; the remainder of the

 nulata. This subspecies. B. a. stormsi, has only a few black bands on the neck: the western form, B, a. anmulata, has bands throughout the body. Photo by Zoological Society of San Diego. (See also plate VII, figure 9.)
body is unicolor brown. The nonvenomons watersnake Grayia, which has the same range, looks much like the western form of the water cobra but may be distinguished by the presence of a loreal scale. Although it may spread the body, Gralia does not have a hood. Water cobras raise the anterior part of the body and spread a narrow hood as a threat, in typical cobra fashion. Adults average $\overline{7}$ to $\overline{7}$ feet in length; record length is about 9 feet.

Dorsal scales 21-23 at midbody, more (23-25) on the neck, fewer ($15-17$) posteriorly. Ventrals $192-227$: subcaudals 67-80.

Distribution: Nyasaland and Lake Tanganyika westward through the rain forest regions to the western Congo and Cameroon.

Remarks: These large water cobras are not aggressire and appear to offer little danger to persons that leave them alone. Little is known of the effect of their bite and no antivenin is produced for the snakes of this genus.

ELAPIDAE: Genus Dendroaspis Schlegel, 1848.

Mambas.

Fobur spectes are eurrently reengntad. 'They range
 sta, sped, athe highly foxit: venom, they are considered atmong the most dabgerons of all smakes. The fact that all are greablh when youmb has confused the identity of these shakes for many years, One species, 11, polllepis. attains a length of it feet.

Definition: Head marrow and elongate, slightly distinct from neck; a distinct canthus. Body slender and tapering, slightly compessed; neck may be flattened when snake is aroused, but there is no real hood; tail long and tapering.

Eyes moderate in size; pupils round.
Head scales: The usual 9 on the crown: frontal broad anteriorly, narrow mosteriorly. Laterally, nasal widely separated from preoculars by prefrontal.

Hody scales: Dorsals smooth and narrow, in 13-2: distinctly oblique rows at midbody, the same or more rows anteriorly, fewer posteriorly. Ventrals 201-282; anal plate divided; subcatudals paired. 99-131.

Maxillary teeth: Two large tubular fangs without external grooves; no other teeth on bone.

Eastern Green Mamba, Dendroaspis angusticeps

 (Smith).Idcntification: This is a long and very slender bright green tree snake that is often confused with the rearfanged boomslang, Dispholidus, and the harmless green bush-snakes, Philothammus. It can be distinguished from both by the smaller eyes and by the absence of the loreal scale, and from the bush-snakes by the absence of keels and notches on the ventral plates. It differs from the black mamba (1 . polylepis), the only other mamba in its range, by its bright green color, the light color (white to bluish white) of the inside of its

Figure .6.-Wastern Green Mamba, Dendroaspis angusticeps. The bright green color and the long head distinguish this species. Photo by New York Zoological Society.
month, and the fewer dorsals and ventrals. Adults average $6-8$ feet in length; record length is about 9 feet.

Dorsals in 17-19 rows at midbody: rentrals 201-232; subcaudals 90-126.

Distribution: A narrow range in the forests and brushy country of east Africa from Kenya southward to
sonthern Natal and northeastern Cape Prorince. It is found on the island of Zanzibar.

Remarles: This species and the more dangerous black mamba were confused for many years. The green mambar is much more arboreal, seldom found on the ground. It is shy and avoids man if mossible. Its renom differs in many ways and is only about half as toxic as that of the hark mamba.

A polyvalent antivenin (mambat) is produced bey the South drican Institute for Medical Research, Johannesburs.

Jameson's Mamba, l)enlrouspis jumesoni ('Iraill).

Identification: I mainly green tree snake with scales usually edged in black, the overall coloration becoming darker posteriorly, with the tail entirely black in some individuals. It differ's from the harmless hush-smakes (Philothammus), and from the rear-fanged bowmslants (Disphotidus), with which it may he consused, in lacking the loreal scale and in having smatler eyes: and from the bush snakes foo in the darker coloration and the absence of lateral keels and notches on the ventrals. It differs from the black mamba (ll. polytepis) in having black edging on the scales and fewer dorsals and ventrals. Adults arerage of to \bar{i} feet in length: a record is 8 feet. 1 inch (schmidt, 1 ! $2: 3: 131$).

Dorsals in 15-1!) rows at midbody, the same number or more (1.5-19) on the neck. fetwer. (11-13) posteriorly. Ventrals $210-239$: subcandals (9)-121.

Frgure 56. Jameson's Mamba, Dculrodespis jomesomi. This individual demonstrates the trpieal alert pose of mambas. Photo by New lork Koological Society. (See also plate VII, figure 10.)

Distribution: The tronical rain forest region from Western Kenya and Thnganyika to Guinea and Angola.

Remarks: This mamba is fomm both on the ground and in bushes: however little has been reported on its hahits.

A polywalent antivenin for its hite (mamha) is prepared by the south African Institute for Medical Research, Johannesburg.

Black Mamba, Te emdrorespix polylepis (xiunthel"
filentification: Ithult snakes are olive brown to dark summetal stay. However, hatchlings are grayish green or olive and this has cansed the black mamba to be con-
fused with the eastern green and Jameson's mambas that share parts of its range. The canthus is particularly sharp in the black mamba and the heat is impressirely high in large individuals. This lave, relatively slender, and rery fast-moving suake is not readily comfused with ans nonvemomous species. It differs from other mambas in heing darker, in having a bluish gray to backish color inside the month, and more dorsal seale rows and more rentral scutes. The forest cobra, Taja melanolenca, differs in having a prominant homb and vers ghoser scales. Alults average ! to 10 feet: the record length is about 14 feet.
Dorsals in ort-2.5 rows it midhorly, the same number or more on the neck (:-T), fewer (1.0-1!) posteriorly.

Figure is.-black Mamba, Dendrogspis polyfopis. The sharply-detined canthus rostralis is phain here. I'hoto by New Jork Zoblogical society. I See also plate III, tigure 1 ; 山late Vll. tigure 11.)

Distribution: Inhabits low-lying thelow f.000 feet) "pen lush conntry from lithiopial and somalia, avoidint the western rain forest rexion, somthitated forat and south-West dfrian.

Remarlis: This snake is foumd in trees and bushes less often than the other mambas. It is one of the fastest suakes known, and hats been chocked at slightly over i miles per homr, or perhaps twice as fast as the fastest North American snake. It pives the impression of great speed and in some of the older literature it was reported to "exceed the speed of a running horse." A recent publication estimates the speed at "probably not exceedin: ᄅ(O mh."

It is certanly one of the most dangerous snakes now living. Althongh it ordinarily makes for its hole when disturbed, it is ready to fight if suddents disturbed. The typieal attitude of alet defense is with the head raised well off the gromnd, mouth slightly agape (showing the back lining) and tongue flicking rapuly from side to side. No other mamba shows such peculiarities. When angered, the snake emits a hollow-sombling hiss and spreads its neck. It is said to strike ont for 40 percent of its lengeth : the average snake strikes out for $2 .-5$ to 30 percent.

A large black mamba secretes enonoh renom to kill i to 10 men and few people survive its bite unless antivenin is administered promptly. The renom inhibits

 heare for beat whalls

 bur:
Western Green Mamba, Itendrouspis vividis (Hallowell).

Iftentitiontion: This is another of the artoreal mambas. Like many forest smakes it las an overatl green or yellowish color, bit eateh of the dorsal seates. as well as the heat sombes, is edted with black. The dorsals are extremely large and marrow ; each dorsal except the one bordering the ventral row is equal to two ventrats in lengith. This suake has fewer dorsal rows

Figure $\overline{\text { On}}$-Western Green Mamba, Dendroaspis viridis. The large oblique black-bordered seales distinguish this species. Photo by New York Zoological Society.
than any of the other snakes with which it might be confused and also lacks the loreal scale typical of colnbrid snakes. No other mamba occurs within its range. ddults arerage 6 to 7 feet in length.

Dorsals in 13 rows at midbody, more (15) on the neck, fewer (3) posteriorly. Ventrals 211-225; subcaudals 10.-119.

Distribution: The tropical rain forest areas of the western bulge of Africa; from the Senegal to the Niger, also the island of Sao Tome.

Remarks: Little appears to be known of the habits of this west African mamba.

A monovalent antivenin ("Dendraspis") is produced by the Institut Pasteur, Laris.

ELAPIDAE: Genus Elaps Schneider, 1801.

Ifrican dwarf garter snakes.
Two species are recognized; both are confined to South Africa. One of the species (E. lactens) attains a length of about 2 feet but neither it nor its smaller relative is considered dangerous.

Definition: Head small, not distinct from neck; no canthus. Body slender and cylindrical; tail short.

Byes small: minils rouml.
Hemal scales: The ushat ! on the erown ; froneat long natl barrow, fitermasals short; rostral broad and pobated laterally, masal fa marow contact with sin. Hide breochar.

Body sembes: Dorsals smooth, in 15 rows at maldbody. Ventrals $160-239$; anal plate divided; subeatadals paired. 2.--11.

Maxiltary teeth: 'fwo proportionately large tubular fathes withont external geones: no other teeth on the bone.

ELAPIDAE: Genus Elapsoidea Bocage, 1866.

Ifricall rarter smake.

 races is currently recognized. It ranges over most of tropical and southern Africa except for the Cape region. It attains a length of :3 to 4 feet and is potentially dangerons. However, it is sluggish and inoffensive and bites only in self-tefense.

Definition: Head of moderate size, not distinct from neck; an indistinct canthus. Body moderately slender, cylindrical; tail vers short.

Eyes small ; pupils round.
Head scales: The usual 9 on the crown; rostral enlarged, obtusely pointed; internasals short. Laterally, nasal in narrow contact with single preocular.

Body scales: Dorsals smooth and rounded, in 13 rows at midbody. Ventrals $138-184$; anal plate entire; subcaudals paired (a few sometimes single), 13-19.

Maxillary teeth: Two large tubular fangs with external groove followed, after an interspace, by $2-4$ small teeth.

Figure 60.-Head Scales of African Garter Snake, Elapsnidca sunderallii. Note the broad rostral and short internasals. (See also plate VIII, fig. 3) Redrawn from Pitman. 1938.

ELAPIDAE: Genus Hemachatus Fleming, 1822.
Ringhals.
A single species is recognized; it is confined to southern Africa. It is a highly developed "spitting" cobra and is a dangerous species.

Definition: Head rather broad, flattened, not distinct from neck; distinct canthus; snout obtusely pointed. Body moderately slender, slightly depressed, tapering; neck region capable of being expanded into hood; tail moderately long.

Eyes moderate in size: pupils round.
Head scales: The usual 9 on the crown: rostral large and obtusely pointed. Laterally, nasal in contact with single preocular.

Body seales: Dorsals distinctly keeled, in 19 oblique rows at midbody, fewer (15) posteriorly. Ventrals 116150 ; anal plate entire; subcandals $38-47$, the first $3-1$ frequently single, the remainder paired.

Maxillary teeth: Two short tubular fangs with external grooves; no other teeth on bone.
Ringhals, Hemachatus haemachatus (Lacépède). Identification: A cobra with strongly keeled scales. When the snake raises the anterior part of its body and spreads the hood, as it does in a defensive attitude, it

Figure 61.-Ringhals, Hemachatus hacmachatus. The strongly keeled seales distinguish this species from other cobras. Photo by Zoological society of San Diego.
exposes a black throat with $1-3$, usually \because, lipht bands on the rentral surface below the hood. The tirst light band is narrow ($1-2$ rentrals in width) while the other is broad ($5-7$ ventrals). Adults average $31 / 2$ to 4 feet in length : record length "just over 5 feet" (FitzSimons, 1962:288).

The dorsal color is usually dark brown with irregular crossbands of lighter brown, often with small black spots; occasionally gray or greenish; old individuals become almost unicolor black.

Distribution: Veldt and open country in southeastern and southern Africa from Rhodesia to the southern Cape Province.

Remarks: This is the most highly specialized of the "spitting" cobras. Its fangs are relatively short but the small renom orifice on the front of the fang and
strong muscles around the renom gland allow the ejection of renom in a fine spray to a distance of 5 to 7 feet. The renom is ordinarils aimed at the eres of the enems. It causes intense pain and spasm of the erelids. Destruction of ere tissue and blindness mar result if the eye is not washed out immediately with some harmless fluid (Fitzsimons, 1902: 290). The ringhals bites if restrained, and can canse death.

Polyvalent antivenin "Polyralent" and "Tropical" are produced by the South African Institute for Medical Research, Johannesburg.

ELAPIDAE: Genus Naja Laurenti, 1768.

Cobras.

Six species are recognized; all are African excent the Isiatic Cobra, Naja naja, and range throughont the Ifrican continent except for the drifting sand areas of the sithara region. Thes are snakes of moderate (4 feet) to large (δ feet) size, with large fangs and toxic venom. The species, N. nigricollis "spits" its venom at the eyes of an aggressor; it is found in the southern part of the rewion of north Africa. The Exyptian cobra (Naja haje) and the western subspecies of the Isiatic cobra (Naja naja oriana) are found in the Near and Middle East remion.

Definition: Head rather broad. flattened, only slightly distinct from neck: snout rounded. a distinct canthus. Lody moderately slender. slightly depressed, tapered; neck capable of expansion into hood; tail of moderate length.

Eyes moderate in size ; pupils round.
Head scales: The usual () on the crown: frontal short ; rostral rounded. Laterally, nasal in contact with the one or two preoculars.

Figure Ge-- Eagptian Cobra, Naja haje. This dangerous species is widespread through the region. Photo by New lork Zoological Societs. (See p. 80, fig. 49 and plate VIII. figure 7.)

 mantly patired

 －l11： 1 tre－th．

 anter thu rain forest rexion excoplt along its aliges．
 bouled．amb broater－humbert suake than the mambat．

 erere the heat athl sombetimes the athterior part of the body maty be brown：in youms imbivicluals small white sputs are sfattered ol appeatr as marrow crossbands over the pusferion part of the body．（bin and belly creatmy white usually with one or two relatively marrow（ 1 reatrals wide）black bands under the hood；increasinge amounts of black posteriorly（see plate VII，tig． 3 ；plate VIII，fic． 8 ）．

Dorsals in 17 －21 rows at milbods，more（23－29））on the beck，fewer（13）pusteriorly．Ventrals 197－2．26； subc：umlals Јーフーフt．

Distribution：Tronical rain forest and subtropicoal forest areas（aud where such forests lave recently dis－ appeared）throuth most of west and central Africa； southw：ard to Ingola and Zululand．

Remurlis：The forest cobra has a loner wedse－shaped hosod like that of the suitting cobler（ N ．Higrisollis）：and is often mistaken for the dark color－phase of the latter． Inowerer，it does not＂spit＂and differs from the spit－ fing cobra in labial color and in the width of the neck bands（ 1 ventrals versus 7 in V ．nigricollis）．
＇The forest cobra is seldom aggressire and few bites are reported．However，it has a highly toxic venom and fatalities are known．

A polyvaleut antivenin（＂K＂obra＂）is produced by Behringwerke，Germany，ancl Institut I＇asteur，I＇aris．

Spitting Cobra，Neja nigricollis Reinhardt．

Identification：A broad black band（width of 7 ven－ trals or more）nnder the hood or an entirely black un－ derside，torether with the absence of distinctive labial coloration，are the best identification features of this cobra．Its seales are smooth but not so glossy as those of the forest cobret．Is in the latter，the lood is long and marrow．Adults average 5 to 6 feet；record is 7 feet，+ inches．

Body color highly variable，ranging from pinkish－tan in some areas to micolor black in others．In south－ west Africol there is one race with alternating rings of brown and black．Light areas underneath are often pinkish，even in black individuals（see plate VIII，fis．9）．

 coutulals sti－7is．

 areats．L＇porn west ．Ifricat athat sonthorat ligyph，atoblime

lirmorlis：＇lhis is one of the eommone robras of the
 wi dfrical．Nlthough it seldom hitos，al largo individual ＂ath＂spit＂（itclually squirt）its veroms for ats fitr as 9 ） lowt．aiming at the eyes．The vemond does sot affect the mubroken skin but，like that of the rimghals（If cma－ chatus），in the eyes it（athses hreat patin ablel spasm of the eyelids．＇lhe eye tissues are destroyed unless the fonom is washed ont immerliately with water or some other nonirritating liquid．Subserfuent flushing of the （eyes with athtivenin diluted with water（1：5）apparently is beneficial sinee the venom is absorbed quickly into the tissues．

Bolyvalent antivenins are manufactured by Behring－ Werke．（rermany：South Ifrican Institute for Medical Kesearch，Johannesburs，Remblic of Sonth Africa；and tho Institut I＇astemr，I＇aris．

Yellow Cobra，${ }^{Y}$＇ıju nivee（IJimaeus）．

Identificution：A relatively small and slender cobra without the black bands under the hood which character－ ize the forest and spitting colbras and withont the row of subocular scalles that identides the Egyptian cobra （ V ．hajc）．It has a broad and rather rounded hood． drults arerage 5 to $;$ feet ；record length about 7 feet．

Dorsal coloration extremely variable，usually yellow－ ish to reddish brown but occasionally（sonthern South－ West Africa and idjacent Cape Province）unicolor black；light color sometimes speckled with dark，or vice－versa．Lighter，and usually micolor，below．One

Figure 63．－Yellow Cobra，Naja nirea．This is a yellow－ speckled brown individual．The hood is not fully spread．Photo by New Iork Zoological Society．
or two brown markings or bauds below hood in soung; this disappears in adults.

Dorsals in 19-21 rows at midbody, more (23) on neck, fewer (15) posteriorly. Ventrals 195-227; subcaudals 50-68.

Distribution: Temperate southern Africa, extending northward in the west to central South-West Africa; absent east of Basutoland.

Remarks: If disturbed, this cobra faces the enemy with body raised and hood expanded, ready to strike if it comes within reach. If left alone it will retreat without further signs of aggression. The venom is the most toxic of the African cobras and fatalities often result if the bite is not treated quickly.

Polyvalent antivenins are produced by the South African Institute for Medical Research.

ELAPIDAE: Genus Paranaja Loveridge, 1944.

Burrowing cobra.

A single, little-known species (I. multifasciata Werner) is known from western Central Africa. The few specimens that have been deseribed are all small (a feet or less in length) but have relatively large fangs. Although no bites are reported for this surecies, it must be regarded as a potentially dangerous snake.

Definition: Head short, flattened, slightly distinct from body. Body moderately slender, cylindrical, apparently without a hood; tail short.

Hyes of moderate size; pupils round.
Head scales: The nsual acales on the crown: rostral broad, rounded; internasals short. Laterally, masal in broad contact with single preocular.

Body seales: Dorsals smooth, in 15-17 obligue rows at midbody, more ($17-19$) on neck, fewer (13) posteriorly. Ventrals $150-175$; anal plate entire; subcaudals 30-39, all or most paired.

Maxillary teeth: Two tubular fangs with external grooves followed, after an interspace, by two small teeth.

ELAPIDAE: Genus Pseudohaje Günther, 1858.

Tree cobras.

Two species are recognized; both inhabit the tropical rain forest region of central and western Africa. They have average adult lengths of about of feet and indiriduals occasionally approach 8 feet. Both species are considered dangerous.

Definition: Head short and narrow, slightly distinct from neek; snout broad, rounded, canthus distinet. Body slender, tapering; neck region with very slight suggestion of hood; tail long.

Eyes very large; pupils round.
Head scales: The nsual 9 on the crown; rostral broad. Laterally, nasal in contact with preocular or separated from it by a "loreal" scale that is occasionally
formed by a vertical suture across the unusually elongate preocular.

Figure 64.-Head seales of Pseudohaje. The lone preocular is sometimes broken with a rertical suture to form a "loreal." 'This is the only" elapid snake in Which this is known to occur frequently. Drawing courtesy of Charles M. Isogert.

Body scales: Dorsals smooth and glossy, in 13-15 oblique rows at midbody, the same number or more (15) on the neck, fewer (2-11) posteriorls. Ventrals 180-205; anal plate entire; subcaudals $74-94$, paired.

Maxillary teeth: Two short fangs with external grooves followed, after an interspace, by $2-1$ small teeth.

Gold's Tree Cobra, I'seudohaje goldii (Boulenger).

Itcntification: A long-tailet, mamba-like arboreal cobra with shing black suales and large eyes. It (and the closely-related P '. nigra) differs from other African cobras in the apmarent absence of a hood, the few scale rows (1.5 at midhody), and the nunsually long tail (more than 20 percent of total length, versus less than 20 percent in other cobras). It differs from the mambas

Figure 6.5. -Gold's Tree Cobra, Pscudohaje goldii. The large ere and the glossy scales are characteristic. Photo by New York Zoological Society. (See also plate VII, figure 2.)

 "parateal hy prefrontal lat bambas). Dilatts aserate

Wheseal surtare untemor shlay black: matorneath the ableorlur haif is gellow whll hack-batrgined bebtrals,
 lall blank

Divfrimiton: 'Tha tropical rala torest region from Nienpla mantward to ligabla abd sobthward to southwow diries
licmurks: 'This coblea is rately emoombered and nothfise abpears to he known of its remom. I closely-related and ponly-kown speries. P. nigro fibuther, ranges westward to sievta L eme.

No athivenill is monduced for either of these species.

VIPERIDAE: Genus Adenorhinos Marx \& Rabb, 1965.

Wrom-eating viper.

A single species, A. barbouri (Laveridge), is recognizal in this recently described genus from 'Tanania. It is a small species, reportedly feeding on earthworms, athd is not believed to be dangerots.

Hefinition: Head moderately hroad and distinct from nork: shont short and rounded: canthus rostralis obtuse. Body moderately slender; tail moderate in length.

Does very large ($11 / 2$ times the distance to lip) ; pupils vertically elliptical.

Heall sales: So enlarged soutes on crown, covered with small imbricate lieeled scolles. Laterally, nostril in anterion part of single nasal, which has a posterior depression: nasal in contact with preocular; a single row of suboculars seprating eye from upper labials; anterior and posterior temporals single.

Body scales: Dorsals keeled excent for first row, in 20-23 rows at midbody. Ventrals rounded, 116-122; sube:udals single, 19-21.
fomutis: This species was recently removed from the genns Atheris by Marx and Rabb (1965: 186).

VIPERIDAE: Genus Atheris Cope, 1862.

Ifrican bush ripers.

Six species are recognized in the genus, which is restricted to tropical Africa. All of the species are relatively small, prehensile-tailed, arboreal snakes which reach a maximum length of less than 3 feet. Although few bites have been recorded, the recent description of a bite from a small specimen (Knoepffler, 190:) suggests that the bite of a 30 -inch individual might be a hazard.

Definition: Head very broad and sharply distinct from narrow neck: canthus distinct, snout broad. Body relatively slender, tapering, slishtly compressed; tail prehensile, morlerate in length.

Eyes moderately large; pupils vertically elliptical.
Head scales: Xo enlarged plates on crown, covered
 kewled. Jatorally, $\ddot{a}-\mathrm{B}$ blat sobles between nasal and rea; eye sepmated from hathats by 1-3 rows of small saters.

Bonly soales: Dorsals stromgly keeled, whth apheal fils: lateral scales smaller than those bear dorsal mble libe, sot serrated; scales in $15-36$ obllighe rows at mid. body, fewer (11-1:) posteriorly. Ventrals rounded, 14217.): subcandals single, :3s-(97.

Remumlis: Marx and Rabh (1042": 186) removed A. berbouri Loverider from Athrois and made it the type of a new gemus, Whenorhinos. (See also remarks under Vipers supercilinis.)

Sedge Viper, Itheris nitschei 'Iornier.

Identification: A rather stout-bodied arboreal viper, usually green with black markings. Dorsal seales relatively small and mumerous. Alults average 20 to 24 inches in length; record length is 2833 inches (Pitman, 1935: 255.

Crown of head uswally green with a V-shaped or A shaped mark; sometimes almost entirely black. Body bright to olive green, irregularly marked with black or with scales tipped with black, occasionally almost unicolor black with a lighter tail. Belly distinctly lighter than dorsal surface, yellowish or very pale green.

Dorsals in $-\overline{-}-32$ rows at midbody, the same number or more on neck, fewer (19) posteriorls. Ventrals 143164 : subcaudals $38-\overline{5} 8$.

Distribution: Mountain areas of the eastern Congo and Uganda southward to northern Rhodesia. Sometimes found on the ground but usually in the reeds and

Figure 66.-Sedge Viper, Atheris nitschei. Photo by New York Zoological Society. (See also plate VII, figure 6.)
papyrus of lake margins or upland swamps, or in the elephant grass of hmmid valless up to a height of 10 feet from the grombl. Reported at altitudes of 6,000 to 7.00 feet.

Remarlis: This is a very common bush viper in its rather restricted range. It appears to be a minor hazard.

No antivenin is prodnced for this group of pipers.
Green Bush Viper, Itheris squamigern (IIallowell).

Identificution: A green or sometimes sellow riper without any black markings. It usually has rellow crossbands or pared yellow spots but may be almost unicolor. Iorsal scales larger and fewer than in A. mitschei. Body usually slender but large individuals may be quite stout. Adults average about 18 to 24 inches in length; oceasional individuals approach 30 inches.

Crown of head micolor green: labials light rellow or cream. Body green usually with 30-3. narrow yellow crossbands or baired yellow spots; sometimes bnicolor green or yellow with scattered green scales. Chin yellow; belly like the dorsal surface.

Dorsals 15-23 on neck and at midbody, fewer (11-17) posteriorly. Ventrals $150-17 \overline{0}$; subcautals 4न-67.

 Ihoto by Isabelle Hunt Conant. (see also plate VII, figure os.)

Distribution: The tronical rain forest reqion from western Kenya and the ('ameroons to Angola; on the island of Fernando Po.

Remarks: This small arboreal riper, though common through the forest areas, appears to be a minor hazard. A very similar species, A. chlorocchis (Schlegel), ranges through the forests of west Africa.

No antivenin is produced for this gromp of ripers.

VIPERIDAE: Genus Atractaspis Smith, 1849.

Mole vipers.

Sixten species are currently recognized. All are African except for two: A. engaddensis Haas (which ramges from legypt to Israel) and A. microlepidota (which is found in the southern part of the Arabian Peninsula as well as throngh much of north and central Ifrica). All are small smakes, less than 3 feet in
length. However, they have large fangs (which look enormous in the small mouth) and are capable of inHicting serious bites on those who attempt to pick them up or who step on them with bare feet.

Defintion: Head short and conical, not distinct from neck, no canthis; shout hroad, flattened, often pointed. Body crlimarical, slender in small individuals, stout in larger ones; tail short, ending in distinct spine.

Ejes very small; frpils round.

Figlebe lix-- ('rown scutes of Atractaspis irroglaris. The broad rostral and frontal, the small supraoculars, and the contact of nasal and preocular are shown. These are all characteristics of the genus. (Sce also

Head scales: The nsual 9 crown scales, rostral enlarged, extending between internasals to some degree, often pointed; fromtal large and broad, stpraoculars small. Laterally, nasal in contact with single preocular (no loreal), hanally one postocnlar.
Body scales: Dorsals smonth without apieal pits, in 1!-37 nomoblique rows at millwas. Ventrals $178-370$: anal plate entire or divided the only viperid snakes with divided anal phates) ; subcandals single or paired. $18-39$.

Bibron's Mole Viper, itractaspis bibronii Smith.
Identification: A munhish-brown or hack, relatively slender viper with small head and strongly projecting snout. Adults average 1 for 1 s inches in length; oceasional individuals may slighty exceed 2 feet.

Dorsal color usually uniform, dark brown or black, often with a purplish sheen. Ventral color creams white, rellowish, spotted with brown or entirely brown except for light anterior edges to the rentrals. Ventral color, when light, extends up onto the first ${ }^{2}-3$ rows of dorsal scales and onto the lips.

Five suprabahals and one (occasionally two) anterior temporal: third infralabial greatly enlarged, separated from its fellow below by $2-3$ scales. Dorsals in 21-20 rows at midbodr. Ventrals $106-260$; anal plate entire; subcaudals $19-28$, all or mostly single.

Distribution: These suakes usually live under stones or in burrows and are commonly seen on the surface only after heary rains have driven them from their subterranean duarters. From Angola and southern
 ＊．11：11．

 vivilslo．

 －j．tits．

 pfterts as well．

No amtivenin is prodllowl for this sronty of vipers．
Western Mole Viper， 1 Itmeluspis corpulentu（IIal－ 10wど1）．
flantificulion：I slate－colowed，rather stont viper with smatl head abul stronsly－projectinif smout．ddults aver－
 may attain a lenetll ot゙ ジ feret．

Dorsal color slate－gras or slate－blue：often terminal portion of tail white．Lighter walerneath．
 second infralabial wreatly enlarged．fissed with chis
 at midurndy．Veutrals 17 －i－20s；anal plate entire；sub）－ （＇andals シコロージ，all or nearly all single．

Disfribution：＇The tropical rain forest recrion from the Ivory（＂oast to the eastern（ounso．

Pemorlis：Little appears to have been reonided con－ cernine the habits or the effect of the bite of this smatl viper．Nevertheless，it should be regulded with suspi－ cion and treated with respect（See Remarks under A. bibronii and ．1．mierolepidote．）
Northern Mole Viper，Atractaspis microlepidota rimallor．
fdentification：A slender，small headed and short－ snothed viper that is black or dark brown above and below．Adults average 20 to $2 t$ inches in length；oc－ casional individuals apmoach a length of 30 inches．
color uniform dark brown or black，usually with a huish sheen，above and below：

Six or seren stpralabials and $2-3$ anterior temporals ； none of infralabials greatly entarged．Dorsals in 20－ 37 rows at midbodr．Ventrals $210-245$ ；anal plate entire or divided；subeatals $23-37$ ，all or mostly single．

Distribution：The savanuah resions of northern and western Africa from Mamitania to Somalia，Uganda， and Kenya．It is also known from varions localities in the southern bart of the Arabian Penimsulat（Atractospis mirroblenidota androwomi Boulenger）but the relation－ ships of this form with other species is not clear．

Remarls：This snaliee is one of the commonest poi－ somots snakes in the sudan（（\％orkill，1035）：30）and is

 a 2.5 perewht montalits．

No athtivnin is pmoned for this group of smakes．

VIPERIDAE：Genus Bitis Gray， 1842.

Aricall vipers．

fen speries atre fomd in tropical and southern Africa． Ther indule the largest of the trme vipers（Viperidae） ats well as some small and moderately sized ones；all of the members of this semus are dangerons，some of them extremely so．

Definition：Heal brodd and vers distinct from nar－ row neck；smout short，it distinct canthas．borly some－ what depressed，moderately to extremely stout；tail short．
byen small；pupils vertically elliptical．
Head scales：No cularged plates on crown，eovered with small scales．Some species have enlarged and erect seales on snout or above ege Laterally，rostral sepa－ rated from nasal by 0 （in 13 ，worthingtoni）to 6 （in some f．hasicomis）rows of small scales，eye separated from supralabials hy e－5 rows of small scales．

Boty scales：Dorsals keeled with apical pits，in 21－ 46 nonoblique or slightly oblique rows at midbody，fewer anteriorly and posteriorly．Ventrals rounded or with faint lateral keels， $112-153$ ；subcaudals paired，lateralls keeled in some species， $16-37$.

Horned Puff Adder，litis cmululis（Smith）．
Identification：A faded．lisht－colored desert viper With short snout and raised supraorbital ridges．A single hornlike spine over the ere is characteristic of this species，but rarels it may he absent．Similar South African vipers usmally have either multiple＂horns＂（ B ． cornuta）or lack them entirely（ B．atropos）．Adults average 12 to 15 inches in length；record length is＂close on＂20 inches．＂

Figtre 69．－Horned Puff Adder，Bitis catulatis．I＇hoto by New York Zoological Society．

Dorsal color raries from rather dark reddish to grayish brown in the east to vers light gray, buff, or pinkish in the west. A rertebral row of rectangular blotches with a usually alternating series of smaller and more rounded botches laterally. Blotches nsually with light renters and often white-edged. A dark-edged light band passes across the crown throngh the eres and obliquely to the rear of the month : a V-shaped mark on crown. Pattern obscure in western, light-colored individuals.

Dorsals in $21-29$ rows at midbods. Ventrals $120-153$: subcaudals $18-34$, the posterior ones usually with lateral keels.

Distribution: Desert regions of southern Angola and western Rhodesia southward through the central pary of Coupe Province; albsent from eastern and western parts of the cillue.
lemothe: This small viper has a highly toxic renom and some deaths are reported as a result of its bite. It often couceals itself in the surface of the sand and strikes ont from this position with little provocation.

Antivenins (1'olsvalent, from other viper renoms) produced by kehringwerke. the Institut Pastemr and the South dfrican Institute for Merlical Research are satid to be effective.
Gaboon Viper, Bitis gubonicu (I)uméril, Bibron, and Duméril).

Identificution: A rery large and extremely thickbodied viper with a distinctive color pattern ; crown of head tan with a narrow hrown modian stripe. The only snake with which it is likels to be confused is the river jack (13. musicormis), which has a large and distinct arrow-shaped mark on the crown. doluts average 4 to 5 feet: record length is 6 feet $81, \underline{2}$ inches (from sierra Leone).
body pattern is a complex geometrical arrangement of tans, blues, and blacks, some of the markines with white edmes. The pattern mas be quite brilliant but it is highly dismptive athd the gaboon viper is ditfientt to see on the leaf-onvered forest 1 loor.

A pair of triangular nasal "horns," moch more evident

Figure 70.-Gaboon Viper, bitis gabonica, Photo by Charles Hackeubrock and Staten Istand Zoo.
in west African individuals. Dorsals in $28-46$ slightly oblique rows at midbody. Ventrals 12--140; subcaudals 17-3.3.

Distribution: Tropienl rain forests and their immediate environs from Sierra Leme and sonthern Sudan southward to northern Angola and northern Natal.

Remarlis: This is the largest of the vipers. The fangs are almost 2 inches long in large indisiduals and there are rery large amounts of highls toxic renom. However, the gaboon viper is nocturnal in hathit and ditficult to awaken in the daytime. Relatively few bites are inflicted by this sluggish snake but they are very serious and hsuatly are lethal without prompt treatment.
lolswalent antivenins are produced he Behringwerke, the Institut lasteur and the south Ifrican Institute for Merlical Research.

Puff Adder, IBitis rrioturns (Merrem).
Iflontification: The romshesealed ambarance and the alternating pattern of dark and light chevron-shaped

 logical suciety of san Diego. (see also plate II, figure 4.$)$
markings are characteristic. Head lanceolate; nostrils face more directly umard than in other African vipers. Adults averace 3 to + feet : oceasiomal individuals attain a length of $\overline{\text { a }}$ feet.

I light band crosses head between eyes and is continmed as a diagonal band from the ere to the rear of the mouth. Gromod color varies from light grasish tan or sellow to dark brown: either the light or the dark chevron series may be emphasized, depending on the density of the gromad color.

Dorsals in 29-11 rows at midhody. Ventrals 124-147; subeandals $16-37$.

Histribution: sayamah and grasslands from Moroceo and western Arabia thronghout Africa excent for the sahara and rain forest regions. Found from sea level to elevations of at least 9.000 feet.

Remarks: Due to its wide distribution, common occurrence, and lethat potential, the puff adder probabls kills more people than any other African snake. The

 men-tons max hato -
 Glatly freveded by severe fotormat hematorhages. The
 fmamble wherl asproathed

 liemparteh

River Jack, liitis nusicormis (shaw).

flemtificulion: d latas abl extremely thick-bodied diper with relatively small head and two or three gates of masal "horns." Most easily disthmuished from the Gatoon viper (which may have a pair of nasal "horns") be the large dark arrow-shaped mark on the crown. dilut smakes are $21 / 6$ to $: 31 / 2$ feet in length; exceptional itulividuals attain a length of 4 feet.
body pattern very complex, usually made up of a verthral series of $10-15$ maired, yelloweedged blue botches. with a lateral series of light-edged dark triangles extending up, from the belly. Ground color varies through varions shades of blue, pink, purple, and green. In spite of its brimiant colors the pattern blends well with the forest floor.

Dorsals in 3i-41 rows at midbody. Ventrals 124140 : subeaudals $16-32$.

Figure 72.--River Jack, Hitis nasiomis. The arrowshaped head marking is distinctive. Photo by Isabelle Hunt Conant. (See also plate II, figure 3.)

Distribution: Swamps, river banks, and other moist habitats through the tropical rain forest region from Liberia and Uganda sonthward through the Congo region.

Remarks: The river jack has a more restricted range than the gaboon viper and apparently inflict, even fewer bites. However, its renom is reported to be highly toxic and it is not as placid as the latter.

Antivenins are produced by Behringwerke, the Institut Dasteur. and the South African Institute for Medical Research.

VIPERIDAE: Genus Causus Wagler, 1830.

Xight mblers.

 Sone atatns a benth of owe :3 feet. The fames are relatively smatl, and the velom is rather mildy toxic. They look surprising like nompoisonous smakes. Night adders are mot considered dangerous to life but their bite is painful.

Definition: Head moterate in size, fairly distinct from nerk, an ohtnse canthns. Body eylindrieal or slightly depressed, moderately slemer; tail short.

Eyes moderate in size ; pupils romm.
Head seates: The nenal 9 crown scales; rostral broad, sometimes pointed and upturned; frontal long, supraculars large. Laterally, a loreal present, separating hasal and preoculars; suboculars present, separating are from labiak.
Body scales: Dorsals smooth or weakly keeled, with apical pits, in $10-22$ oblique rows at milbody, fewer (11-14) posteriorly. Ventrals rounded, 109-15.5; subcaudals single or paired. 10-33.
Rhombic Night Adder, Causus rhombeatus (Lichtenstein).

Identification: A sating sheen to the scales and a r-shaped marking on the back of the head are characteristic of this snake. It differs from the other night adders in having a romnded snout and a relatively unmodified rostral scute. Adults average about 2 feet in length ; exceptional individuals reach "close on 3 feet."

Ground color light gray to dark brown or olive with a series of $20-30$ sfluarish blotches down the back; irregular markings laterally. Markings are often white-edged. Unicolor white or yellowish below, rentrals occasionally have dark edges.

Distribution: Widely distributed through the saran-

Figtire 73.-Head scales of Rhombic Night Adder, Causus rhombcatus. Note the rear projection of the rostral, the presence of a loreal, and of suboculars; all of these are characteristic of the genus. (See also plate VIII, figs. 4 -6). Redrawn from l'itman, 1938.
nah and grasslands, but preferring damp areas. From Sudan and Somalia to Angola in the west, and along the eastern Cape to its tip.

Remarks: This nocturnal viper is usually inoffensire and most bites are a result of persons stepping on the smake in the dark. The renom is not of high toxicits and a bite usually results in nothing more than local swelling and pain. If teased, the adder flattens the neck, puffs up the body and hisses loudly, striking out wildly at ans moving object. Ňo antivenin is produced for this gronp of vipers.

VIPERIDAE: Genus Echis Merrem, 1820.

Saw-scaled wipers.
Two species are recognized. One (F . coloratus) is restricted to eastern Figyb, the Arabian l'eninsula, and 1sracl. The other (E. carinatus) rances from Ceylon and southern India across western Isia and north Africa southward into tropical Africa. Althongh neither attains a length of 3 feet, they possess a highly toxic venom and are responsible for many deaths. When disturbed they characteristically intlate the body and produce a hissing sound by rubbing the saw-edsed lateral scales against one another. This same pattern of behavior is shown by the nompoisonous egreating snakes Dasypeltis.
Definition: Head broad, vers distinct from narrow neck; canthus indistinct. Body exlimdrical, moderately

Eyes moderate in size; pupils vertically elliptical.
Head scales: A narrow sumanonlar sometimes present; otherwise crown covered with small scales. which may be smooth or keeled. Lostral and hasals distinct. Laterally ese separated from lahials be $1-\frac{1}{\text { fows of }}$ small scales; hasal in contact with rostral or separated from it by a row of small scales.

Body scales: Dorsals leeled, with apieal pits, lateral seales smaller, with serrate keels, in $2 \bar{\circ}-3 \hat{i}$ oblique rows at midbody. Yentrals rounded, 132-205; subeaudals single, $21-5 \%$.

VIPERIDAE: Genus Vipera Laurenti, 1768.

'True adders.
Eleven species are recognized. This is an especially variable group, with some members that are small and relatively imocuous (e.g., T. berus) and others that are extremely dangerous (1 . lebetina, 1 . russelii). They are found from northern Eurasia throughout that continent amd into north Africa. One spectes ranges into the Fast Indies (T . russclii), and two are found in east Africa (see Remarks under V°. superciliaris).

Definition: Head broad, distinct from narrow neck; canthus distinct. Body cylindrical, varsing from moderately slender to stont; tail short.

Lyes moderate in size to small; pupils verticalls elliptical.

Hearl scales: Variable: one sperdes (V^{7}, ursinii) has all 9 crown scutes, most species have at least the supra-
oculars, but even these are absent in one (T . lebctina): head otherwise covered with small scales. Lateralls. nasal in contact with rostral or separated by a single enlarged scale (the nasorostral), ere separated from supralabials by $1-4$ rows of small seales.

Body scales: Dorsals keeled, with apical pits, in $19-$ 31 nonoblique rows at midbody. Ventrals rounded, $120-$ 180 ; subeaulals paired, $20-64$.

African Lowland Viper, Vipera superciliaris Peters.

Identification: The onls riper in central Africa with supracular platex but with the remainder of the crown covered with small scales. Adults arerage about 20 to $2 t$ inches in length.

Eres moderate in size: snout rounded with distinct canthus.

Head with symmetrical black markings; body pale reddish-hrown with a vertelral row of hack crosshars which are broken lateralls by an interrupted rellowish stripe. Ventral surface white with black spots.

Head covered with small imbricate keeled scales except for the large supranculars. Dorsals in 26-30 rows at midbody. Ventrals $142-169$; subeaudals $32-13$.

Distribution: Lowland areas of Tanzania (near Lake Nrasa) and Mozambique.

Remarks: No bites by this snake have been reported. It is a rare snake in collections and its relationships (fogether with that of r°. hindii Bonlenger) are still in dispme. Kramer (19:1) helieves that these two ripers are closely related to the desert-dwelling members of the genus Bilis (e.g., IB. caulalis), while Marx and Rabb (100.i) helieve that thes represent a terrestrial branch of the genus Atheris.

REFERENCES

(See also General References)

INGEL, F. 1939. Les serpents de l'Ifrique occidentale Framealise. Larose Ed., Paris. 246 p., 83 figs.
BOGERT, Charles M. 1940. INerpetological Results of the Vernay Angola Experdition, with Notes on African Reptiles in Other Collections. Part I. Snakes, Including an Arrangement of Ifrican Colubridae. Bull. Amer. Mus. Nat. Hist., 77 (Art 1) : 1-107, figs. 1-18, pl. 1.
BOGERT, Charles M. 19t2. Pseudohaje Gunther, I Valid Gemus for Two West African Aboreal Colras. Amer. Mus. Novitates (1174) : 1-9, figs. 1-8.

BROADLET, Donald G. 1959. The Herpetology of Southem Rhodesia. Part 1. Snakes. Bull. Mus. Comp. Zool., 120 (1) : 1-100, figs. 1-10, pls. 1-6.
 suakes. Lamgmans (iseen de Co, Lad. Lon don. it p., it tigs. (most in color).
 Publ. sudan (iovt. Mus. (Nat. Hist.), (3) : (rous seem).
(O ORKIL」。 Noman Is. 19ati, shake Loisoning in tho sudan, p. :3:3-339, figs. 1-5. In If. E. Buckley and N. Porges, Venoms, Pub. Am. Issoc. Advance sei. (44). 467 p .
DOLCET, Jean. 106:3. Les serpents de la Republique de Cote d'Ivoire. Acta Tropica, 20 (3 \& 4) : 201-340, figs. $1-57, p \mathrm{ls} .1-10$.
FIT\%ALMONS, Vivian F. M. 1962. Snakes of southern Mfrica. Macdonald \& Co., Lstd, London. $423 \mathrm{p} ., 7 t$ color pls., 106 figs., 78 maps.
KNOEPFFLER, Louis-Philippe. 1965. Autoobservation par morsure d'Atheris sp. 'Ioxicon, $2: 275-276$.
KRAMER, Eugen. 1961. Uber zwei afrikanische Zwergpuffottern, Bitis hindii (Boulenger, 1910) und Bitis superciliaris Peters, 1854). Vierteljahrsschrift naturf. Ges. Zurich, 106: $410-123$, fig. 1.
LACRENT, Raymond F. 1956. Contribution a l'Herpetologie de la region des Grands Lacs de l'Ifrique central. Parts 1-3. Ann. Mus. Royal Congo Belgie, ser. 8 (sci. zool.), 48 : $1-390$, figs. $1-50$, pls. $1-31$.
LAURENT, Raymond F. 1956. Esquisse d'une faune herpetologique du Ruanda-Urundi. Bull. Nat. Belges, nov-dec. 1956: 280-287.
LAURENT, Raymond F. 1964. Reptiles et Amphibiens de V'Angola. Pub. Culturais Mus. Dundo (67): 1-165, figs. 1-40.
LAESSON, Frank. 1950. Identification of Snakes of the Gold Coast. Crown Agents for the Colonies, London. 142 p., 65 figs., 33 pls. (13 color).
LOVERIDGE, Arthur. 1953. Zoological Results of a Fifth Experlition to East Africa. III. Reptiles from Nyasaland and Tete. Bull. Mus. Comp. Zool., 110 (3) : 143-322, figs. 1-4, pls. 1-5.
LOVERIDGE, Arthur. 1957. Check List of the Reptiles and Amphibians of East Africa (Uganda; Kenya; Tanganyika; Zanzibar). Bull. Mus. Comp. Zool., 117 (2): 153-362.
 Mem. Junta Invest. Ultram, 8: 135-160.
MERTENS, Robert. 1938. Herpetologische Lrgebnisse einer Reise nach Kamerun. Abh. senckenbergischen naturf. Ges., 442: 1-52, pls. 1-10.
MERTENS, Robert. 195\%. Dio Amphibien und Reptilien Sudwestafrikas. Aus den Ergebmissen einer im Jahre 1952 ausgefuhrten Reise. Abhandl. senckenbergischen naturf. Ges., 490: 1-172, 24 pls. (1 color).
P\RKER, II. W. 1949. 'The Snakes of Somaliland and the Sokotra Islands. Zool. Verh. Rijksmus. Nat. Hist. Leiden (6) : 1-115, figs. 1-11, map.
PERRET', J. I. 1960. Une nouvelle et remarquable espece d'Atractaspis (Viperidae) et quelques autres Serpents d'Afrique. Rev. Suisse Zool., 67 (5) : 129-139, figs. 1-4.
PITMAN, Charles R. S. 1938. A Guide to the Snakes of Uganda. Pub, Uganda Soc., Kampala, Uganda. 362 p., 2 figs., 23 color pls.
POPE, Clifford II. 1958. Fatal Bite of Captive Ifrican Rear-fanged Snake (Disphotidus). Copeia, 1958 (4): 280-282.
SCHMIDT, Karl P. 1923. Contributions to the Herpetology of the Belgian Congo Based on the Collection of the American Museum Congo Experlition, 1909-1915. Part II. Snakes. Bull. Amer. Mus. Nat. Hist, 49 (art. 1) : $1-146$, figs. $1-15$, pls. $1-22$, maps 1-19.
SWEENEY, R. C. H. 1961. Snakes of Nyasaland. Nyasaland Soc. \& Nyasaland Govt. Zomba, Nyasaland. 200 p., 43 figs., map.
VISSER, John. 1966. Poisonous Snakes of Southern Ifrica and the Treatment of Snakebite. Howard Timmins: (apetown, 60 pp., 65 figs. (60 col .).
WITTE, Gaston-Francois de. 1941. Batraciens et reptiles. In Exploration du Parc National Albert, Mission G. F. de Witte (19331935). Pub. Inst. Parc Nationaux Congo Belge, fasc. 33: 1-261, figs. 1-54, pls. 1-76.
WITTE, Gaston-Francois de. 1962. Genera des serpents du Congo et du Ruanda-Urundi. Ann. Mus. Royal Afrique Central, ser. 8 (10t) : 1-203, figs. $1-94$, pls. 1-15.

Section 7

THE NEAR AND MIDDLE EAST

Definition of the Region:

Inchudes Asian Turkey, Syria, Jordan, Israel, Lebanon, the Arabiun I'eninsula. Iraq. Iran. Afghemistan ame the Georgian. Armenium Azerbaidzhan. Turkmen. Uzbek. Tadzhik. Kirgiz and IIazakh vociulist Noviet liepublics.

TABLE OF CONTENTS
Page
Map of the region 107
Introduction 107
Distribution Chart 106
Key to Genera 108
ELAPIADE:
Naja 107
W'alterinnesia 107
VIPERIDAE:
1tractaspis 107
Bitis. 109
Cerastes 110
Echis 110
Eristicophis 110
P'seudocerastes 110
I'ipera 111
CROTALIDAE:
Agkistrodon 112
References 113
TABLE 11.-DISTRIBUTION OF POISONOUS SNAKES IN THE NEAR \& MIDDLE EAST

		$\frac{\pi}{3}$	$\begin{aligned} & \text { 哥 } \\ & \hline \end{aligned}$						$\stackrel{E}{3}$	疗				\%
Elapidae														
Naja haje			E			W	X							
Naja naja									NE	X		\cdots	SW	
Walterinnesia aegyptia		S	x	x	x	N			w					
VIPERIDAE														
Atractaspis engaddensis_			W	S										
A. microlepidota							X							
Bitis arietans_						SW	x							
Cerastes cerastes		?	x	S	W	x	?							
C. vipera				S		?								
Echis carinatus_					S	X	X	X	x	X		S	W	
E. coloratus--			x	S		x	X	?						
Eristicophis macmahoni									SE	SW				
Pseudocerastes persicus_		?	X	S	W	N		?	x	S				
Vipera ammodytes	x	NW							NT		x	w		
V. berus--														N
V. kaznakovi	NE								NW		X			
V. Iebetina	x	x	?	N	x	N			x	X	X	S	SW	s
V. ursinii	?								NW		x	sw	W	x
V. xanthina	W	x	x	x					N		X			
CROTALIDAE									N	?	N	X	X	X

*Certain groups of adjoining nations or provinces are here treated as units. The symbol \boldsymbol{J} indicates distribution of the species is widespread within the unit. Restriction of a species to part of a unit is indicated appropriately ($\mathrm{sW}=\mathrm{southwest} \mathrm{}, \mathrm{etc).} .\mathrm{The} \mathrm{sym}$. bol ? indicates suspected occurrence of the species within the unit without ralid literature.

INTRODUCTION

Like north Africa this is a predominantly arid region, although it does not contain quite so much sterile desert. This trend toward a drier climate is quite recent, marked changes having occurred within historic times. Overgrazing, deforestation, and other forms of human misuse have contributed to the trend. The snake fauna contains species in common with northern Africa, Europe, and central Asia; toward the east there is infiltration of species characteristic of tropical Asia.

In the Middle East also, the vipers cause most of the snakebites. Cobras and other elapids occur, but are rare or restricted in range, and inflict few bites. Several species of sea snakes are encountered in the Persian Gulf.

GENERIC AND SPECIES DESCRIPTIONS

ELAPIDAE: Genus Naja Laurenti, 1768.

Cobras.

Six species are recognized; all are African except the Asiatic cobra, Naja naja, and range throughout the African continent except for the drifting sand areas of the Sahara region. They are snakes of moderate (4 feet) to large (8 feet) size, with large fangs and toxic venom. The N. nigricollis species "spits" its renom at the eyes of an aggressor; it is found in the southern part of the region of north Africa. The Egyptian cobra (Naja haje) and the western subspecies of the Asiatic cobra (Naja naja oxiana) are found in the Near and Middle East region (see p. 80 and p. 124).

Dcfinition: Head rather broad, flattened, only slightly distinct from neck: snout rounded, a distinct canthus. Body moderately slender, slightly depressed, tapered; neck capable of expansion into hood; tail of moderate length.

Eyes moderate in size; pupils round.
Head scales: The usual 9 on the crown; frontal short; rostral rounded. Laterally, nasal in contact with the one or two preoculars.

Body scales: Dorsals smooth, in $17-25$ oblique rows at midbody, usually more on the neck, fewer posteriorly. Ventrals 150-232; anal plate entire; subcaudals 42-88, mostly paired.

Maxillary teeth: Two rather large tubular fangs with external grooves followed, after an interspace, by $0-3$ small teeth.

ELAPIDAE: Genus Walterinnesia Lataste, 1887.
Desert black snake.
A single species, W. aegyptia, is known from the desert regions of Egypt to Iran. It is relatively large, 3 to 4 feet, and is probably a dangerous species (see p. 81 and fig. 50).

Definition: Head relatirely broad, flattened, distinct from neck; snout broad, a distinct canthus. Body cylindrical and tapered, moderately slender; tail short.

Eyes moderate in size; pupils round.
Head scales: The usual 9 on the crown; rostral broad. Lateralls, nasal in contact with single elongate preocular.

Body scales: Dorsals smooth at midbody, feebly keeled posteriorly, in 23 rows at midbody, more (27) anteriorly. Ventrals $189-197$; anal plate dirided; subcaudals $45-48$, tirst $2-8$ single, remainder paired.

Maxillary teeth: Two large tubular fangs with external grooves followed, after an interspace, by $0-2$ small teeth.

Mar 8.-Section 7, Near and Middle East.

VIPERIDAE: Genus Atracłaspis Smith, 1849.

Mole vipers.

Sixteen species are currently recognized. All are African except for A. engaddensis Haas (which ranges from Egypt to Israel) and A. microlepidota (which is found in the southern part of the Arabian P'eninsula as well as through much of north and central Africa). All are small snakes, less than 3 feet in length. However, they have large fangs (which look enormous in the

KEY TO GENERA

1. A. Crown of head with 7 or 9 latre shields (see lier. (i) \ddot{Z}
2. ('rown of head with small scales (see fig. 96), or with for fewer shields 7
ㄹ. A. Loreal pit present Agkistrodon
3. Loreal pit absent :
?3. A. III subeandals single; eye very small Atractespis
B. It least some of the subcaudals paired; eye large to very small 4
\&. 1. Loreal present NP*
li. Loneal abment 5
क. A. Body scales smooth anteriorly, keeled posteriorly; amal plate divided; some subcaudals single Walterinnesia
B. Withont the above combination of characters ${ }^{6}$
4. A. Hood present in life; body scales smooth; anal plate single Naja
5. No hood; body scales smooth or keeled; anal plate divided or single NP
6. A. Ventrals extend full width of belly 8
B. Yentrals do not extend full width of belly NP
7. A. Subcaudals single Echis
B. Subcaudals paired 9
8. A. Horn-like process covered with small scales above eye Pseudocerastes
9. Horn-like process absent or composed of a single scale or spine 10
10. A. Ventrals with lateral ridge or keel 11
B. Ventrals without lateral ridge or keel 12
11. A. Horn-like spine often present above eye; rostral not flanked by enlarged scales Cerastes
B. No horn-like projection above eye; rostral flanked by enlarged sates Eristicophis
12. A. Nostril directed upward; 27 or more scale rows around midbody Bitis
B. Nostril directed laterally; fewer than 27 scale rows around midbody Vipera

[^9]small mouth) and are capable of inflicting serious bites on those who attempt to pick them up or who step on them with bare feet.

Defuition: Head short and conical, not distinct from neck, no canthus ; snout broad, flattened, often pointed. Body cylindrical, slender in small individuals, stout in larger ones; tail short, ending in a distinct spine.

Eyes very small; pupils round.
Head scales: The usual () crown scales, rostral enlarged, extending between internasals to some degree, often pointed; frontal large and broad, supraoculars small. Laterally, nasal in contact with single preocular (no loreal), usually one postocular.

Body scales: Dorsals smooth withont apical pits, in 19-37 nonoblique rows at midbody. Ventrals 18×-3 UU: anal plate entire or divided the only riperid snakes with divided anal plates) : subcaudals single or paired. 18-39.

Middle East Mole Vipers, Atractaspis.

Identification: This group of very distinctive snakes has two representatives in the region, the Arabian mole viper (A. microlepidota andersoni) and oasis mole riper (A. cnouddensis). They are very similar in appearance. Smooth scales, small head not distinct from the neck, and the typieal ! crown shields distinguish them from other vipers of the recion. Large ventrals extending the width of the belly distinguish them from the burrowing blind snakes and sand boas. The pointed snout, tiny eyes (diameter less than half the distance from eye to lip), unpaired subcaudals, and overall blackish color distinguish them from the small colubrids of the Middle liast. The elongated tubular venom glands extend through the anterior fifth of the body.

The Arabian mole viper has 23 or 2.5 scale rows at midbody. $219-2 \overline{5} t$ ventrals, and 31 or fewer subcaudals. The oasis mole viper has 27 to 39 scale rows at midbody - 2 (it-2se ventrals, and 36 to 39 subeathdals.

The average length of both species is 18 to 2.0 inches.
Distribution: The Arabian mole viper occurs in the southwestern part of the Arahian l'minsula, The onsis mole viper is found in Israel, Sinai and northeastern Egspt.

Remarks: These are nocturnal burrowing suakes found mainly in oases and in cultivated areas rather than in desert. Anthorities who know these snakes in life agree on one point-it is impossible to hold a mole viper safely excent with forcens or tongs. The small head, very Hexible neck, long fangs and extraordinary ability to use one fang at a time with the jaws almost closed, make them very hazardous to handle. Several of the bites reported have been inflicted on zoologists or others collecting snakes. Most bites have been more uncomfortable than alarming, but there have been enough fatalities recorded to confirm the dangerous nature of these snakes. Local pain and swelling are seen regularly with mole viper bites. Severe cases show fever, vomiting, and blood in the urine. There is no antivenin.

VIPERIDAE: Genus Bitis Gray, 1842.

African vipers.

Ten species are found in tropical and southern Africa. They include the larsest of the true ripers (Viperidae) as well as some small and moderately sized ones; all of the members of this genus are dangerous, some of them extremely so. The puff adder, 13 . arictans, is the only member of this group that enters the region (see p. 101).

Defintion: Head broad and vers distinct from narrow neek; snout short, a distinct canthus. Body somewhat depressed, moderately to extremely stont; tail short.

Eres small: nupils vertically elliptical.
Head scales: No enlarged plates on crown. covered with small scales, Some species have enlarged and erect seales on snout or above eve. Laterally, rostral separated from naval by (in l . urothingtoni) to 6 (in some h. nasicornis) rows of small scales, eye separated from supralabials by ジ- \quad rows of small seales.

Body scales: Dorsals keeled with apical pits, in $21-$ tif nonobligue or slightly obligue rows at midbody. fewer anteriory and fosteriorly. Ventrals rounded or with faint lateral keels, 110-17.3: subcaludals paired, laterally keeled in some species, 16-37.

Figure 74.-Desert Horned Viper, Cerastes cerastes. A ricious but not especially dangerous snake. Photo by Standard Oil Compans.

VIPERIDAE: Genus Cerastes Laurenti, 1768.

Horned vipers.

Tiwo speches are recognized ; both are restrleted to the devert reghons of northern derien nad western Asha. Veither is a large species ; the bite is maturn but usually nut serfuns. buth sperdes are found in this region (see 11. A己)

Wefinition: Head broad, Hattened, very distinct from meek; shout very short and broad, canthus indistinct. Body depressed, tapered, moderately slender to stout; tatit short.

Lyes small to moderate in size; pupils vertically elliptieat.

Head seales: Head covered with small ircegular, tubercularly-keeled scales: a large erect, ribbed hornlike seale often present above the eye; no other entarged scales on crown. Laterally, nasal separated from rostral by $1-3$ rows of small scales; eye separated from supralabials by $3-5$ rows of small scales.

Body scales: Dorsals with apical pits, large and heavily keeled on back, smaller laterally, oblique, with serrated keels, in 23-35 rows at midbody. Ventrals with lateral keel, $102-165$; subcaudals keeled posteriorly, all paired. 18-42.

VIPERIDAE: Genus Echis Merrem, 1820.
Saw-scaled vipers.
Two species are recognized. One (E. coloratus) is restricted to eastern Egypt, the Arabian Peninsula and Israel. The other (E. carinatus) ranges from Ceylon and southern India across western Asia and north Africa sonthward into tropical Africa. Although neither attains a length of 3 feet, they possess a highly toxic renom and are responsible for many deaths. When disturbed they charcteristically inflate the body and produce a hissing sound by rubbing the saw-edged lateral scales against one another. This same pattern of behavior is shown by the nonpoisonous egg-eating snakes Dasypeltis (see p. 83 and fig. 52).

Definition: Head broad, very distinct from narrow neck; canthus indistinct. Body cylindrical, moderately slender: tail short.

Eyes moderate in size; pupils vertically elliptical.
Head scales: A narrow supraocular sometimes present; otherwise crown covered with small scales, which may be smooth or keeled. Rostral and nasals distinct. Iaterally eye separated from labials by $1-4$ rows of small scales; nasal in contact with rostral or separated from it by a row of small scales.

Body scales: Dorsals keeled, with apical pits, lateral scales smaller, with serrate keels, in 27-37 oblique rows at midbody. Ventrals rounded, 132-205; subcaudals single, 21-52.

VIPERIDAE: Genus Eristicophis Alcock and Finn, 1897.

Asian sand viper.

A single spectes, F macmahonil Alcock and Flnn, is known from the desert areas of sontheastern Iran, Afghanistan, and West Pakistan. It is a rather small

Figure 75.-Asian Sand Viper, Eristicophis macma+ honii. A little-known desert viper inhabiting sand dunes. Photo by New York Zoological Society.
snake, less than 3 feet in length. However, fatal cases attributed to this species (Shaw, 1925) and a recent serious bite indicate that it is a dangerous snake with venom similar to that of Echis.

Definition: Head broad and flattened, very distinct from neck; snout broad and short, canthus not distinct. Body slightly depressed, moderately to markedly stout; tail short.

Eyes moderate in size; pupils vertically elliptical.
Head scales: Crown covered by small scales; rostral broad, bordered dorsally and laterally by greatly enlarged nasorostral scales. Laterally, eye separated from labials by $3-\mathbf{4}$ rows of small scales; nasal separated from rostral by nasorostral scale.

Body scales: Dorsals keeled, short, in 23-26 vertical rows at midbody. Ventrals with lateral keels, 140-148; subcaudals paired, without keels, 29-36.

VIPERIDAE: Genus Pseudocerastes Boulenger, 1896.

False horned viper.

A single species is recognized (see Remarks). It ranges from Sinai and the Arabian Peninsula eastward to West Pakistan. It attains a length of 3 feet and is considered dangerous.

Definition: Head broad, very distinct from neck; snout short and broadly rounded; nostrils dorsolateral, valves present.

Eyes small to moderate; pupils vertically elliptical.
Head scales: Crown covered with small imbricate scales; an erect hornlike projection covered with imbri-
cate scales above eye. Laterally, nasals separated from rostral by small scales; eye separated from labials by 3-4 rows of small scales.

Body scales: Dorsals weakly to moderately keeled, in 21-25 nonoblique rows at midbody. Ventrals 134158; subcaudals paired, 35-48.

Remarks: Four species were listed in this genus by Klemmer (1963: 377). However, Anderson (1963: 472) reported that P. latirostris Guibe, 1977, was a misidentified specimen of Eristichophis macmahonii Alcock and Finn, 1897. Marx and Rabb (1965: 167-175) corroborated this allocation. They also referred P. bicornis Wall, 1913 , to the synonymy of P. persicus (Duméril, Bibron, and Duméril), 1954, and accorded P. ficldii Schmidt, 1930, subspecific status. The remaining slecies, P. persicus, was allocated to the genus Vipera.

Persian Horned Viper, Pseudocerastes persicus (Duméril, Bibron, and Duméril).

Identification: Differs from the Ifrican horned desert

Figure 76.-Yersian Horned Viper, Psendocerastes persicus. Photo by Hymen Marx.
viper in absence of keels on the ventrals and in the nature of the horn which is composed of several small scales in this species and a single spinelike scale in the African species. From other vipers within its range, it differs in the presence of the supraocular horns and dorsolateral position of the nostril.

Color pale gray or bluish gray to khaki with darker blotches or crossbands; dark band on side of head ; belly white.

Average adult length $2: 2$ to 28 inches; maximum about 35 inches.

Distribution: From the Sinai Peninsula eastward through Baluchistan. Found in sandy and rocky country to elevations of about 6,000 feet; frequents burrows and crevices among rocks.

Remarks: Almost exclusively nocturnal. Hisses loudly when disturbed but is not particularly vicious. Venom of the subspecies, P.p. ficldii is highly toxic but produces little local tissue damage. It should be considered a dangerous snake. Antivenin is produced by the State Razi Institute, Tehran, Iran.

VIPERIDAE: Genus Vipera Laurenti, 1768.

True adders.

Eleven species are recognized. This is an especially rariable group, with some members that are small and relatively innocuous (e.s., V. berus) and others that are extremely dangerous (V. lebctina, V. russelii). They are found from northern Eurasia throughout that continent and into north Africa. One species ranges into the East Indies (\mathbf{I} ' russelii), and two are found in east Africa (see Remarks under V. superciliaris). The long-nosed sand riper, V . ammodytes, and the European viper, V. berus, enter this region from the north and west (see p. 74 and p. 75).

Definition: Head broad, distinct from narrow neck; canthus distinct. Body cylindrical, varying from moderately slender to stout; tail short.

Heses moderate in size to small; pupils vertically elliptical.

Head scales: Viariable: one species (V^{γ}, ursinii) has all 9 crown scutes, most species have at least the supraoculars, but even these are absent in one (V. lebetina): head otherwise covered with small scales. Laterally, nasal in contact with rostral or separated by a single enlarged scale (the nasorostral), eve separated from supralabials by $1-4$ rows of small seales.

Body seales: Dorsals keeled, with apical pits, in $19-$ 31 nonoblique rows at midbody. Ventrals rounded, $120-$ 180; subcandals paired, 20-64.

Levantine Viper, Vipera lebetina (Linnaeus).
Identification: Head triangular, rather long, distinct from neck; body stout; tail tapers abruptly behind rent. Crown with small keeled scales; nostril lateral; supra-

Figure 77.-Levantine Viper, Vipera lebetina. Photo by New York Zoological Society.

 -atilials ilvideml.
bursab volor laght kray, khakl, we hate with mimuto
 series of smatt, rectambulat brown, reddish of gray Botches: belly bum variably fonded with gray; tath phakiald brown. A reddilsh brown phase whend blotebes is seen in parts of the range; in other areas the smakes may he almost mitormby dusty gray or khaki.

Mreake lensth 30 to 45 inches; maximum at litte over is feet.
llistribution: ('yprus and the Cychades Islands through the ('ancasus amd Middle last fo Kashmir. Imhabits barren roky areas msually it altitudes of B.(AK) (0) $\mathrm{P},(0) 4)$ feet but at lower altitudes foward the nothern and western part of the range.
liemurlis: Very slow to move; seeming almost oblivious to stimmli when encountered by day. (Many of its local mames mean "deaf one" or "blimd one.") More active and alert at nisht but may strike quickly and savadely at any time; ocasionally climbs into bushes.

The Levantine viper is important as a cause of snakebite in the Middle last. The quantity and toxicity of the renom are abont the same as for Kussell's viper. Antivenins against 1 . lebetina venom are produced by the state Razi Institute, Tehran, Iran, and Tashkent Institute, Moscow.

5 . Icbetina, like the majority of vipers found in the Middle East, lays eggs.

Near East Viper, Tipera xanthina (Gray).

Identificution: Head large, a little shorter than in the Levantine viper; body huild similar; supracular not divided, narrow, turned up into a hornlike process in the subspecies raddci; usually 1 or 2 scale rows be-

Figure 78. -l'alestine Viper, Vipera xanthina palaestinac. This subspecies of the Near East viper is a leading cause of snakebite in its range. Photo by Etrich Sochurek.
tweren eye atme upher labinds; dorsal sembes banally in 23 , lexs often in 2.0 rows at mblbody.
firound color satuly yellow, golden brown, gray or retdish browt with sertes of oval or roblad spots with Hghter erentors and pate edges; these are often fused itto a \%ig\%at hatad. Top of bead with consphemons Vstathed dark mark or pair of elongate dark spats ; prombnent dark stripe behind eye; belly yellowhsh whth black or gray mottling.

Average length 28 to 3 B inches : maximum about 4 feet.
Histribution: The Caucasus Monmaths and northWestern Iram, Western Turkey and south to Israsel and Jordan. Occurs alous stream valleys and in other Haces where there are vegetation and moisture; absent from true desert ; often plentiful in cultivated regions.

Remarks: A nocturnal shake that not infrequently may be found near homan habitation. It is alert and strikes quickly when disturbed. The subspecies palaestinue is the leading cause of smakebite accidents in Israel and adjoining territory.

Much research has been done on the venom of the l'alestine viper ($V . x$. palacstinac). The lethal dose for man is estimated at 75 mg .-Well within the capacity of an adult snake. The case fatality rate is about 5 nercent. Antivenin is mroduced by the Institut Pasteur, l'aris. An Israeli antivenin is reported to be ready for production.

CROTALIDAE: Genus Agkistrodon Beauvois, 1799.

Moccasins and A sian pit vipers.

Twelve species are recognized. Three of these are in North and Central America; the others are in Asia, with one species, A. halys (Pallas) ranging westward to southeastern Europe. The American copperhead (A. contortrix) and the Eurasian mamushi and its relatives (A. halys) seldom inflict a serious bite but A. acutus and A. rhodostoma of southeastern Asia, as well as the cottonmouth (A. piscivorus) of the southeastern United States, are dangerous species. Pallas's viper, A. halys is the only one that enters this region (see p. 75).

Definition: Head broad, flattened, very distinct from narrow neck; a sharply-distinguished canthus. Body cylindrical or depressed, tapered, moderately stout to stout; tail short to moderately long.

Eyes moderate in size ; pupils vertically elliptical.
Head scales: The usual ! on the crown in most species; internasals and prefrontals broken up into small scales in some Asian forms; a pointed nasal appendage in some. Laterally, loreal pit separated from labials or its anterior border formed by second supralabial. Loreal scale present or absent.

Body scales: Dorsals smooth (in A, rhodostoma only) or keeled, with apical pits, in 17-27 nonoblique rows. Ventrals $125-174$; subcaudals single anteriorly or paired throughout, 21-68.

REFERENCES

ANDERSON, Steven C. 1963. Amphibians and Reptiles from Iran. Proc. Calif. Acad. Sci., vol. 31, pp. 417-498, figs. 1-15.
KHALAF, Kamal T. 1959. Reptiles of Iraq with Some Notes on the Amphibians. Ministry of Education: Baghdad, 96 pp., 40 figs.
MENDELSSOHN, H. 1963. On the Biology of the Venomous Snakes of Israel. Part I. Israel Jour. Zool., vol. 12, pp. 143-170, figs. 1-9. 1965. Part II, ibid, vol. 14, pp. 185212.

MERTENS, Robert. 1952. Amphibien und Reptilien aus der Tuerkei. Rev. Fac. Sci. Univ. Istanbul, ser. 13, no. 1, pp. 41-75.
MERTENS, Robert. 1965. Wenig bekannte "Seitenwinder" unter den Wïstenottern Asiens. Nat. u. Mus. vol. 95, pp. $346-352$, figs. 1-5. NIKOLSKY, A. M. 1916. Faune de la Russie. Reptiles. Petrograd. vol. 2, $349 \mathrm{pp} ., 8$ pls.
SHAW, C. J. 1925. Notes on the Effect of the Bite of Mc Mahon's Viper (E' macmahonii). J. Bombay Nat. Hist. Soc., vol. 30: 485-486.

Section 8

SOUTHEAST ASIA

Definition of the Region:

Includes the Indian Subcontinent; Tibet and other Mimalayan States; the Chinese provinces of Sinkiang, T'singhai, Szechwan. Yunnan. Kueichow, Kwangsi, Kwangtung, Munan, Kiangsi, Fukien, Chekiang, and Hainan Island; Burma; Thatand; the Malay Peninsula; Laos; Cambodia; Viet Nam; Ceylon; Andaman and Nicobar Islands; Sumatra, Java and the Lesser Sunda Islands; Borneo and Celebes.

TABLE OF CONTENTS

Page
Map of the region 117
Introduction 117
Distribution Chart 116, 118
Key to Genera 119
ELAPIDAE:
The Kraits 117
Bungarus 120
Coral Snakes:
Calliophis 121
Maticora 122
Cobras 123
Naja 124
Ophiophagus 125
VIPERIDAE:
Azemiops 126
Echis 126
Eristicophis 126
Pseudocerastes 127
Vipera 127
CROTALIDAE:
Agkistrodon 128
Trimeresurus 129
References 130

INTRODUCTION

In number and variety of species the snake fauna of southeast \mathbf{A} sia is undoubtedly the richest in the world. It is the only region where virtually all major groups of snakes are represented. The richness of the fauna reflects partly the great variety of serpent habitats which range from semiarid slopes to fresh and salt water marshes, from alpine meadows to tropical rain forest. The region has been a major center of serpent evolution as well as one where some primitive types have survived.

Southeast Asia has also maintained for centuries a dense human population organized into a

Mar 9.-Section 8, Southeast Asia
succession of complex cultures and subcultures. Over this time span many kinds of snakes, including several venomous species, have developed a pattern of coexistence with man. Nowhere else do dangerous snakes and humans live in closer proximity in such numbers. This is the chief reason why southeast Asia has the world's highest
incidence of snakebites and snakebite deaths. This does not mean that snakes are everywhere apparent. Americans and Europeans visiting tropical Asia or living in its cities may nerer see a snake other than those exhibited by snake charmers. Extreme secretiveness is part of the snake's scheme for survival. But sometimes man and poisonous snake confront each other suddenly and unexpectedly to the everlasting disadvantage of one or both parties.

Vipers, cobras and their elapid allies, and sea snakes are all well represented in southeast Asia and all contribute to the snakebite problem. While few careful studies have been made, there is evidence that vipers, including pit ripers, are responsible for the greater number of snakebite cases while elapids are credited with fewer bites but a higher percentage of deaths. Sea snake bites are not uncommon in coastal rillages.

GENERIC AND SPECIES DESCRIPTIONS

THE KRAITS

(Bungamus)
The name krait (of Hindhi origin) has been associated by English speaking peoples with a small venomous Indian snake. Actually there are several species of kraits and none of them are small; in fact, two reach lengths of about 7 feet. Kraits resemble many nonpoisonous snakes in general appearance. They have short rather flat heads only slightly wider than the neck. The eyes are small and dark, the pupils almost invisible in life. They are smooth scaled and glossy; most have a rivid pattern of crossbands. Three features of scutellation help distinguish kraits from other Isian snakes-a combination of all is diagnostic:

1. The vertebral row of scales is strongly enlarged, except in one mare species.
2. At least some of the subcaudals are undivided; in most species all are undivided.
3. The loreal shield is absent.

Kraits are strongly nocturnal, and their alert disposition by night differs from their quiet, almost stupid behavior by day. They cause few snakebites but the case fatality rate is very high.

Kraits lay eggs that are attended by the female. Their food consists largely of other snakes.
TABLE 12．－DISTRIBUTION OF POISONOUS SNAKES IN SOUTHEAST ASIA（continued）

	皆	艺	둘					$\begin{aligned} & * \\ & \text { 品 } \\ & \text { E } \\ & \text { in } \\ & \text { in } \end{aligned}$	号	？ 플 f	$\begin{aligned} & \text { 菏 } \\ & \text { 号 } \\ & 0 \end{aligned}$	E	$\begin{aligned} & \text { E } \\ & \text { Z } \\ & \vdots \\ & \vdots \end{aligned}$	$\frac{\text { 砍 }}{\frac{5}{5}}$	运	Ef	$\begin{aligned} & = \\ & = \\ & y \\ & 5 \\ & 5 \\ & \vdots \\ & y \\ & y \end{aligned}$		边	$\frac{3}{3}$	－
CROTALIDE（continued）																					
Agkistrodon hypnale＿		S	X																		
A．monticola							X														
A．nepa－－－－			X																		
A．rhodostoma										I	X	X	X	X	X	\boldsymbol{X}					
A．strauchi．－－－						E	N														
Trimeresurus albolabris＿		NE		N	X			X	X	X	X	N	X		X	X	N	I			
T．cantori－－																		λ			
T．chaseni																		－	－		
T．convictus－														N							
T．cornutus									X	N			X								
T．erythrurus		NE		X	X				$\boldsymbol{\lambda}$	N											X
T．fasciatus																		I			
T．gramineus		X		X														，			
T．hageni															λ						
T．huttoni－																					
T．jerdonii		NE		N		SE	X	I	N				N								上
T．kanburiensis										S											
T．kaulbacki									N												
T．labialis																		N			
T．macrolepis		S																			
T．malabaricus		S																			
T．monticola		NE			X		X	X		X				X							
T．mucrosquamatus		NE					S		$\stackrel{N}{N}$												
T．popeorum		NE								X				$\xrightarrow{2}$					X		
T．puniceus．－－－－－														I	K	X	X		入		
T．purpureomaculatu				S						T				I	X			λ			
T．stejnegeri－－－		NE			K		S	X	N	SE	？										
T．strigatus－－		S																	ス		
T．sumatranus										S				，	．		$\boldsymbol{\lambda}$		－		
T．tonkinensis								？					N								
T．trigonocephalus			X																		
T．wagleri										S				λ	X		X		I	λ	

 without valid literature．Hunan，Kiangsi，Fukien，Chekiang provinces and the island of Hainan．

1. A. Loreal pit present 2
B. Loreal pit absent 3
2. A. No enlarged crown shields Trimeresurus
B. Five to nine enlarged crown shields Agkistrodon
3. A. Crown of head with large shields 4
B. Crown of head with small scales 12
4. A. Tail paddle-shaped Sea snake
(See Chapter VIII)
B. Tail not paddle-shaped 5
5. A. Loreal scale present 6
B. Loreal scale absent 7
6. A. Movable fangs present Azemiops
B. No fings present NP*
7. A. Vertebral scale row enlarged and at least some subcaudals undivided Bungarus
B. Without the above combination of characters 8
8. A. Occipital shields present; anterior subcaudals undivided Ophiophagus
B. Not as above 9
9. A. Dorsal scales smooth 10
B. Dorsal scales keelect NP
10. A. Hood seen in life; body scales in 19 or more rows anteriorly Naja
B. No hood; slender snakes with no more than 15 scale rows anteriorly 11
11. A. Venom glands in normal position; anal shield usually divided Calliophis
B. Elongate venom glands extending well into body; anal shield entire Maticora
12. 13. Ventrals extemting full width of belly $1: 3$
B. Ventrals not extending full width of belly or absent NP
1. A. Subeaudals undivided Ech is
B. Subeaudals divided 14
2. A. Hornlike process above eye Pseudocerastes
B. No hornlike process above eye 15
3. A. Rostral flanked by enlarged scales; ventrals with lateral ridge Eristicophis
B. Rostral not flanked by enlarged scales; ventrals without lateral ridge Vipera
[^10]
ELAPIDAE: Genus Bungarus Daudin, 1803.

Kmils.

Fiweloe suedes are reomghlad; all lahahit the region
 phe attala bobethe of $\overline{\mathrm{i}}$ feet. Most spedes atre of mot-
 tramely damaerous.
lecrinifion: Head small, flathened, shighty distinct

Figtre 79.-Head Scales of Krait (Bungarus). Note the small eye and the nasal in broad contact with the single prencular. Redrawn from Maki, 1931.
from neck: no distinct canthus. Body moderately slender, crlindrical; tail short.

Eyes small: pupils round or vertically subelliptical.
Head scales: The usual 9 on the crown; frontal broad. Laterally , nasal in broad contact with single preocular.

Body scales: Dorsals smooth, vertebral row enlarged and hexagonal (strongly so except in B. lividus), in $13-17$ oblique rows at midbody. Ventrals 193-237; anal plate entire; subcaudals single or paired (all paired only in some specimens of 13 . bungaroides), 23-56.

Maxillary teeth: Two large tubular fangs with external grooves followed, after an interspace, by $\mathbf{1 - 4}$ small, feebly-groored teeth.

Indian Krait, Bungarus caemuleus (Schneider).
Identification: Body cylindrical with slight even taper; tail with pointed tip. All subcaudals undivided.

Tet black to dark brown with a series of narrow white or jellow crossbands that tend to be in pairs and often fade out or break up on the anterior quarter of the body; upper lip white or sellow; belly an immaculate white (see plate VI, fig. 5).

Arerage adult length 3 to 4 feet; maximum slightly orer à feet.

Distribution: Essentially restricted to India and parts of West Pakistan. Found in a variety of habitats at low and moderate eleyations preferring rather dry open country. Often found near human habitations and
frembently anters pooriy constractod or dolapidated

lifomerks: Inolian kraits nsablly prowl on hot humid hights and are quite atge in thele movements. When alarmed they coll loosely with the body slighty thattened and head conceated. They make ferky movements and may clevate the tail. 'They do mot strike but offor make a quick suaphoge bite. During the day they are much more lethargle.

This is the most dangerous of the kraits for it has a venom of very high toxicity for man-the lethal dose is estimated at about 4 mg . Bites are rare but the fatality rate in one series of 3π cases was 77 percent. Antivenin is produced by the Central Research Institute, Kasanli, India; and the Ilaffine Institute, Bombay, India.

Ceylon Krait, L'. ceylonicus (Giunther).
and

Malayan Krait, B. candidus (Limmaens).

Description: These two kraits are very similar to the Indian krait in general appearance, but have fewer crossbands (15-2.) versus $35-5$ for cacruleus). The bands are wide in candidus, narrow and often broken in ceylonicus.

Many-banded Krait, B. multicinctus Blyth.

Identification: Yery similar to the Indian krait but the light crossbands are not in pairs and the underside may show dark mottling. It is a little smaller than cacrulcus having an average length of 35 to 45 inches and maximum of less than 5 feet.

Figure 80.-Many-banded Krait, Rungarus multicinctus. From a painting. (See also plate V, figure 2).

Distribution: Burma through southern China to Hainan and Taiwan. It frequents wooded or grassy places near water and may be found in villages and suburban areas. It is common in rice paddies.

Remarks: Active on damp or rainy nights; inoffensive in disposition as a rule. Toxicity of the venom for animals is extremely high (LD_{50} about 0.1 mg . per kilo). Bites by this krait are seen regularly in Taiwan, but the case fatality rates are less than half those reported for India. Antivenin is produced by the Taiwan Serum Vaccine Laboratory, Taipei.

Banded Krait, Bungarus fasciatus (Schneider).
Identification: A marked vertebral ridge giving a permanently emaciated appearance, and a distinctly blunt tail are characteristic of this species.

Pattern of alternating light and dark bands encircling the body and of almost equal width. The light bauds are usually bright yellow, occasionally white, pale brown or orange; the dark bands are black.

Average length 4 to 5 feet; maximum abont 7 feet.
Distribution: Eastern India to southern China and south through much of Malaysia and Indonesia. Occurs in rather open country to elevations of about 5,000 feet. often found near water.

Remarks: This is such a surprisingly quiet, inoffensise snake that it is believed harmless over much of the territory where it is found. When annoyed it curls up,

Figure 81.-Banded Krait, Bungarus fasciatus. The blunt tail is typical. Photo by New York Zoological Society.
hides its head beneath its coils, and makes jerky flinching morements but does not bite excent in rare instances. Cases of snakebite due to the banded krait are almost unknown. Its renom is of lower toxicity for animals than that of some other kraits. Antivenin is produced by the Institut Pasteur, laris: the Institut Pasteur Bandung, Indonesia and the Queen Saorabha Memorial Institute, Bangkok.

Red-headed Krait, Bungarus flaviceps Reinhardt.

Identification: General appearance like the banded krait, but tail only slightly blunt; anterior subcaudals entire, posterior ones divided.

Very striking and distinctive coloring-head and tail
bright red, body black with narrow bluish white stripe low on side, and sometimes a narrow orange stripe or row of dots down middle of back.

Size about the same as the banded krait.

Figere X.-Rel-headed Krait, Bungarus faviceps. Both the head and the tail are bright red in this species. Photo by D. Dwight Davis.

Distribufion: Southern Burma to Viet Nam and south through Malaysia and larger islands of Indonesia. Inhabits jungle mostly in hilly or mountainous country. A rare snake.
ficmarks: Apparently much like the banded krait in behavior. No stuly of its venom has been done nor are there records of its biting man. Intivenin is produced by Institut lasteur, D'aris.

ELAPIDAE: Genus Calliophis Gray, 1834.
Oriental coral smakes.
'lhirteen species are remgnized; all inhabit the region of southeastern Asia. Most are small speries but a few exceed 3 feet in lengih. It least the larger individuals are considered dangerous.

Defmition: Head small, not distinct from body. Body eglindrical, slender and elongated; tail short.

Figure 83.-Head Scales of Oriental Coral Snake, Calliophis. Redrawn from Maki, 1931.

Poisonous Snakes of the World

Ho:al sealew: 'The torama !) bh the ('town: rostral

bimis seater fonsals smontlo, in 1:5-17 nomothlique

Mavilary teeth: 'Two latye thblar tatas with extermal frompes followed, atter ath interspace, by: 0-83 shall peeth

Oriental Coral Snakes, Culliophis.

formbification: This semus of wenerally small shakes indules the sheries formerly in the kembs Homitumgurus. They all have a smatl head which is bately of aot distinct trom the necos: a lons body which is slim atul "xlindrical with little taper; 13 or 15 scale pows at midbody, rately 17 : a short tail; and a smooth polished antearance. Like the American coral smakes, they are ditticult to distinguish from some nompoisonous shakes. Thsence of the loreal shitel in the coral suakes helus, but similar nompoisonons shakes may lack this shiedt. Divided subcandals and the sbsence of enlarged vertelnal seates distinguish them from krats. Cobras are latger and have a quite different body baild.

Color and pattern show marked individual and species variation. Representative patterns are exemplified by c'tlliophis mucclellandii which is russet to pink with narrow, widely separated black crossbands and a wide cream hand across the hase of the head, and by C. saufori which is brown to cximson with 3 longitudinal black stripes and a narrow cream headband. (See plate V, lis. (b; plate VI, fis. 1.)

Distribution: The cenus occurs throughout southeast Asia including the Philippines, Malaysia, and Taiwan. Thes are snakes of forest country ranging well into the mountains but they avoid dry terrain. Occasionally they have been collected in suburhan areas.

Remarks: The Oriental coral snakes are generally considered rare, but this may only reflect their very secretive nature. They have been found under logs or ground litter and occasionally in the open at night.

Thes are quiet rentiles apmarently very reluctant to bite. Some anthorities consider them essentially harmless, but it mar be recalled that the North American coral snake once hat this reputation.

ELAPIDAE: Genus Maticora Gray, 1834.

Long-crlanded coral snakes.

Two species are found in the region of southeastern Asia: from Thailand and the Philippines to Sumatra, Java, Borneo, and Celebes. These snakes are relatively small and slender but individuals of one species (M. bivirgata) occasionally apmroach a feet in length; such indiriduals are believed to be capable of inflicting a dangerous bite.

Hegmifion: Homd small mad bol disthet from body:

Figes small to modiratle; puphls rount.
Hemd scales: 'The usuat ! on the crown; no canthas ; rostral broal amb romated. Daterally, masall In broad contact whth simge preocular ; eye la contact with subralablal rews.

Bolly scalles: Dorsals smooth, In $1: 3$ nonobllatue rows throughout borly. Ventrals 19%-2aniz; anal phate entire; subcathlats parect, 15-50.

Maxillary teeth: Two hare tubular fangs; no other teeth on the bone.
liemarhis: The ouly consistant difference between these suakes and those of the genns. Colliophis is that Maticora has elongated venom glands that extend posteriorly for about one-third of the boly longth. The heart has been pnshed back to the middle third of the body, where it (am be felt (in preserved specimens) as a hard object, thus identifying the genus.

Color and pattern exhibit much rariation. In general they are dark brown to blue back above with narrow light stripes of yellow, red, male blue, violet, or white. The belly of the common long-glanded snake (Maticora intcstinalis) is hack and white: the tail red barred with black. In the red-bellied long-glanded snake (M. birirgatt the entire head, tail and belly are bright red.

Figure 84.-Long-glanded Snake, Maticora bivirgata. Photo by D. Dwight Daris

These are secretive, inoffensive snakes. When disturbed they squirm about violently often curling and elevating the tail to display their bright color. The hehavior is characteristic of some Asian and American coral snakes and may occasionally be seen in kraits. It is likewise demonstrated by several unrelated kinds of nonpoisonous snakes.

Althongh thes rarely bite, the long-glanded snakes must be considered potentially dangerous. Serious poisoning has resulted from the bite of M. intestinalis and death from the bite of M. bixirgata. No antivenins are produced against renoms of long-glanded snakes or Oriental coral snakes.

COBRAS

The cobras are at once the best and most poorly known of Asia's poisonous snakes. Except for the very distinct ling cobra, all central and south Asian populations are regarded as subspecies of Naja naja. There are, however, some significant differences in fang type, pattern, color, behavior, and renom composition among these forms, hence they will be considered separately.

The Isian cobras are at home in many types of terrain, only desert and dense rain forest being generally aroided. Flat country with high grass and scattered groves of trees is an optimum habitat. Rice fields and other sorts of agricultural

Figure 8:T-Indian Cobra, Naja naja naja. The hood pattern of two spots is distinctive. Photo by Erich Sochurek.
land may support many cobras, and they are often common around villages and cities. Here they may be found in crumbling walls, old buildings, and gardens.

In western India and Pakistan cobras are more active by day-usually in the evening and early morning - while in the countries to the east they show a greater tendency to be nocturnal. They are timid when encountered in the open and seek to escape. When cornered they rear up and spread their hoods, but biting seems to be almost a last resort. The snakes frequently strike with the mouth closed. They are most dangerous when surprised at close quarters. In biting, they tend to hold on, chewing savagely. Although the fangs of Malayan, Indonesian, and Philippine cobras are modified for spraying venom at the eyes, this beharior seems to be uncommon, at least when the snake is confronted by a human foe.

The hood identifies a living cobra. Although some nompoisonous Asian snakes flatten the neck slightly when alarmed, none do so to such a marked degree as do the Isian Vaja. The hood of the king cobra is much narrower. Identification of dead cobras is more difficult. Among the more useful scale characteristics are absence of the loreal shiedd and the presence of a large third supralabial which touches both the eye and the nasal shicld. This combination is seen elsewhere only in some of the Oriental coral snakes. Color and pattern are extremely rariable and will be discussed in the following paragraphs; however, most Isian Jiaju have conspicious dark bars or spots on the underside of the neck at about the level of the hood. This is not seen in many nonpoisonous smakes that might be confused with cobras.

Large cobras may have a great quantity of renom-sometimes 500 to 600 mg .-and the lethal close for man is estimated at not more than 20 mg . In spite of this, many persons recover from bites without effective treatment. Eridently the snakes may inject little renom when biting defensively. Some cobra bites are accompanied by extensive necrosis with little systemic effect. Such bites have been reported in Malaya and elsewhere in southeast Asia and also in west Africa. The strongly lethal component of cobra venom can be separated from that component producing local necrosis, and it appears that venom of some pop-
uhations or imdividual smakes is high in nerotiz ing factor hat fow in newrotoxin.

Isian cobtoas feed upon almost any kime of pertebate small emoush to be swallowed. Their fomdness for rats helps exphain their abundance near hmman habitations. Cobras lay egges, 10 to 20 being an swerage chatch. The femate and occasionally the male remain with the erges and maty de fend them.

Intivenin sources: Antivenin against venom of Isian cobras is produced by the Behringwerke, Marhum- Lahn, (iemman: Central Research Institute。Kasauli, India: Hatlkine Institute, Bomhay, India: 'lashkent Institute, Moscow (\mathcal{N}^{\prime} (fuen. (x'imm): (Queen Saovabha Memorial Institute, Bangkok, Thailand; Commonwealth Serum Labbotatories, Victoria, Australia (Malay Naja) ; Taiwan Serum Vaccine Laboratory, 'aipei (Naja n. afre) ; State Razi Institute, 'Tehran, Iran (Naja n. oxiuna) ; Department of I Iealth, Manila, Philippines (J̌aju n. philippinensiv) ; Institut Pasteur, Bandung, Indonesia (Naju n. spututrix).

ELAPIDAE: Genus Naja Laurenti, 1768.

Cobras.

Six species are recognized; all are African except the Isiatic cobra, Naja maja, and ramge throughout the African continent except for the drifting sand areas of the sahara region. They are snakes of moderate (4 feet) to large (8 feet) size, with large fangs and toxic renom. The species, N. nigricolliz, "spits" its venom at the eyes of an aggressor; it is found in the southern part of the region of north Africa. The Emyptian cobra (Naja haje) and the western subspecies of the Asiatic cobra (Naja naja nsiana) are found in the Near and Middle East region. The Asiatic cobra, N. maja, is the only species in this region.

Definition: Head rather broad, flattened, only slightly distinct from neek: snout rounded, a distinct canthus. Body moderately slender, slightly depressed. tapered; neck capable of expansion into hood; tail of moderate length.

Eyes moderate in size; pupils round.
Head scales: The usial 9 on the crown: frontal short ; rostral rounded. Laterally, nasal in contact with the one or two preoculars.

Body scales: Dorsals smonth, in $17-5$ oblique rows at midbody, usually more on the neck, fewer posteriorly. Ventrals 150-23: ; anal plate entire; subcaudals 42-88, mostly paired.

Maxillary teeth: Two rather large tubular fangs with external grooves followed, after an interspace, by 0-3 small teeth.

Indian Cobra, Nifje mujer neije (I immatetus).
fitchliftedtion: Adalts brown or black, unfform or whth saricgathon prodteced by rows of dappled os b-colorod-scalos. 'Thero is a "spectacle" type hood mark present, eseeph in blate imdividuals where it is apparently obsemod by pigment. Belly is light anteriorly becoming clouded posteriorly, or generally dark with light areas on neck. Young paler and more variesated. In popmations where the adults are unform black, the youmg show a boot mark.

Average length 4 to \bar{i} feet, maximum about $61 / 2$ feet. sexes of about equal size.

Distribufiom: Most of the Indian Subeontinent exclusive of the extreme northwest and region east of the Ganges delta; Ceylon.

Oxus Cobra, Ňija nuja oxiana (Eichwald).

Ifentification: Adults brown, sometimes with traces of wide dark crossbands; hood mark never present; belly pale with dark bars on neck. Young tan or buff with regular dark crossbands; no hood mark. The hood in this form is noticeably narrower than in other Asian Naja.

Length about the same as the Indian cobra.

Figure 86. Oxus Cobra, Naja naja oxiana. This western representative of the Asiatic Cobra occurs in northeastern Iran and in Afghanistan. Photo by Allan Roberts.

Distribution: Northern frontier of West Pakistan across Afghanistan and into eastern Iran and southern parts of Russian Asia. Avoids desert areas; occurs in mountains to about $\mathbf{7 , 5 0 0}$ feet.

Monocellate Cobra, Naja naja kaouthia Lesson.

Identification: Brown or black usually speckled or variegated with white or pale yellow and often showing alternate wide and narrow transverse dark bands: dorsal hood mark a pale circle edged with black and
enclosing 1 to 3 dark spots; ventral hood mark a pair of dark spots or a wide dark band. Young darker than adults and with more virid crossbands.

Distribution: West Bengal, East Pakistan, Assam and Burma; Thailand; Malaya and southwest China, mostly in lowlands.

Chinese Cobra, Naja naja atra Cantor.

Identification: Adults grayish brown, olive or blackish with widely spaced narrow light bands sometimes in pairs; hood marks variable but usually similar to the monocellate cobra; belly pale sometimes with brown mottling. Young black with distinct whitish crossbands. Slightly smaller than the Indian cobra; maximum length about $51 / 2$ feet. (See plate VI, fig. 2).

Distribution: Thailand and south China east to Viet Nam, Hainan and Taiwan.

Malay Cobra, Naja naja sputatrix Boie.

Identification: Brown, gray or black without detinite pattern on body; hood marks as in the monocellate cobra or dorsal mark absent; belly dark sometimes with white blotehes on the throat. In this race of the Asian cobra, the discharge orfice of the fang is small and well short of the tip. This type of fang is associated with the habit of spraying or "spitting" venom, and such behavior has been reported for the Malayan colbra.

Arerage length 40 to 50 inches; maximum about 60 inches.

Distribution: The Malay peninsula and most of the Larger islands of Indonesia.

Borneo Cobra, Naja naja miolepis Boulenger:

Identification: Black or rery dark brown above without a dorsal hood marking; belly yellow to dark gras. Young with widely spaced white or fellow crossbands and a chevron-shaped light mark behind the head. 'The maximum length is about in inches.

Distribution: Borneo, Palawan (Philippines). Naja naja samarensis of the Visayan Islands of the Philippines is very similar.

Philippine Cobra, Naja naja philippinensis Taylor.

Identification: Light brown or olive above without hood marking; cream to light brown below. Young darker with reticulate pattern of light lines. Size about the same as the Borneo cobra.

Distribution: Luzon and Mindoro, Philipnines.

ELAPIDAE: Genus Ophiophagus Günther, 1864.

King cobra.

A single species, O. hannah, is found in southeastern Asia and the Philippines. It attains a length of 16 to 18 feet, and is considered one of the world's most dangerous snakes.

Definition: Head relatively short, flattened, moderately distinct from neck: snout broad, rounded, eanthus indistinct. Body slender, tapering, neek region capable of expanding into small hood; tail long.

Eyes moderate in size; pupils round.

Head scales: The usual 3 on the crown, plus a pair of large occipitals in contact with one another behind the parietals. Laterally, nasal in narrow contact with elongate preocular.

Figure si.-Head Scales of King Cobra, Ophophagus hamnah. The large scutes (occipitats) behind the parietal sentes identify this genus. Redrawn from Maki, 1931.

Body scales: Dorsals smooth, in 1.7 oblique rows at midbodr and posteriorly, more (17-19) on neck. Ventrals :40-2.H: subcaudals $81-104$. the anterior ones single, the remainder pared.

Maxillary feeth: Two relatively short fangs (about $1 / 2$ inch in a large specimen) with external grooves followed, after an interspace, by 3 small teeth.

King Cobra, Hamadryad, Ophiophagus hannah (C'intor).

Identification: The great size is an important recognition feature. Adults in most parts of the range measure $\overline{7}$ to 13 feet and are larger than ans Asian smakes except the brthons and exceptional specimens of the nonpoisonous keeled rat snake (\%aocys) which may reach 12 feet. Smaller king cobras mar be recognized by the presence of large occipital shields, a unique feature of the species. The hood is mroportionally narrower than in Isian Faja.
ddults olive, brown or greenish yellow becoming darker on the tail: head seales edged with black: throat sellow or orange sometimes with black markings. Ioung black with buff, white or gellow cherron-shaped narrow crossbands. Adult snakes from Last lBengal, Burma and Thailand retain the crossbands especially on the posterior half of the body.

Distribution: Peninsular India to the Himalaran fonthills thence eastward across southeastern China and regions to the south; the Philippines and larger islands of Indonesia. In the western and northern part of its range largely confined to hills jungle to elerations of 6.000 feet. In Malaya and Thailand found in fairly open country and in cultirated areas. Nowhere is it rery plentiful.

 In trees and th the water. Whthe they have been re perteat to anak waprowoked attacks, such behatobe is
 Dio very datmorons, but they trembently five lithe evidence wh hostllty when phoomenerd. When angry they Give at deop resomabt hiss shmilar for the growl of a stanll dog.

Figure 88.-King Cobra, Ophiophagus hannah. The hood is much smaller than in the Asiatic Cobra, Vaja naja. Photo by San Diego Zoo.

The king cobra is unique among snakes in constructing an elaborate nest of dead leaves and other decaying vegetation. There are two chambers, one for the eggs, the other occupied by the female snake. The male may also remain nearby. Nesting cobras frequently but not invariably defend their eggs.

King cobra bites in man appear to be most infrequent; indeed there seems to be no adequate account of the symptoms of envenomation. Venom of the king cobra shows marked antigenic differences from Naja venom and is not well neutralized by Naja antivenin. Its toxicity for mammals is less than that of Asiatic Naja venoms. King cobra antivenin is produced by Queen Saovabha Memorial Institute, Bangkok.

VIPERIDAE: Genus Azemiops Boulenger, 1888.

foras viper.
I slugho apectes, I. forte bonlenger, is known from the monntaths of smblbeastorn Asia. It is atmall speceles, hess than 3 feet in length, and its danger to man is nnknown.

Definition: Head somewhat Hathened, distinct from beck; smout hroad and short, canthas obtuse. Body cylimbrical, moderately slember; tail short.

Hyes moderate in size; pupils vertically elliptical.
Head scales: The usual 9 scutes on the crown; rostral broad, frontal broad. Laterally, eye in contact with supralabial row ; nasal separated from preoculars hy small stmarish loreal.

Body scales: Dorsals smooth, in 17 nonoblique rows at midbody, fewer (15) posteriorly. Ventrals rounded, 180-189; subcandals paired throughout or a few anterior ones single, 42-5̈3.

VIPERIDAE: Genus Echis Merrem, 1820.

S゙ar-scaled ripers.
Two species are recognized. One (F. coloratus) is restricted to eastern Ligypt and the Arabian peninsula. The other (E. carinatus) ranges from Ceylon and southern India across western Asia and north Africa southward into tropical Africa. Although neither attains a length of 3 feet, they possess a highly toxic venom and are responsible for many deaths. When disturbed they characteristically inflate the body and produce a hissing sound by rubbing the saw-eged lateral sales against one another. (see p. 83, fig. 52). This same pattern of behavior is shown by the nonpoisonous egg-eating snakes Dasypeltis.

Definition: Head broad, very distinct from narrow neck; canthus indistinct. Body cylindrical, moderately slender ; tail short.

Eyes moderate in size; pupils vertically elliptical.
Head scales: A narrow supraocular sometimes present; otherwise crown covered with small scales, which may be smooth or keeled. Rostral and nasals distinct. Laterally eye separated from labials by 1-4 rows of small seales; nasal in contact with rostral or separated from it by a row of small scales.

Body scales: Dorsals keeled, with apical pits, lateral scales smaller, with serrate keels, in 27-37 oblique rows at midbody. Ventrals rounded, 132-205; subcaudals single, 21-52.

VIPERIDAE: Genus Eristicophis Alcock and Finn, 1897.

A single species, E. macmahonii Alcock and Finn, is known from the desert areas of southeastern Iran, Afghanistan, and West Pakistan. It is a rather small snake, less than 3 feet in length. However, fatal cases attributed to this species (Shaw, 1925) and a recent
serious bite indicate that it is a dangerous snake with venom similar to that of Echis (see p. 110, fig. 75).

Definition: Head broad and flattened, very distinct from neck; snout broad and short, canthus not distinct. Body slightly depressed, moderately to markedly stout; tail short.

Eyes moderate in size; pupils vertically elliptical.
Head scales: Crown covered by small scales; rostral broad, bordered dorsally and laterally by greatly enlarged nasorostral scales. Laterally, eye separated from labials by $3-4$ rows of small scales; nasal separated from rostral by nasorostral scale.

Body scales: Dorsals keeled, short, in 23-26 vertical rows at midbody. Ventrals with lateral keels, 140-148; subeaudals paired, without keels, 29-36.

VIPERIDAE: Genus Pseudocerastes Boulenger, 1896.

False-horned viper.

A single species is recognized (see Remarks, pp. 110111). It ranges from sinai and the Arabian Peninsula eastward to West Pakistan. It attains a length of 3 feet and is considered dangerous.

Definition: Head broad, very distinct from neck; snout short and broadly rounded; nostrils dorsolateral. valves present.

Eyes small to moderate; pupils vertically elliptical.
Head scales: Crown covered with small imbricate scales; an erect hornlike projection covered with imbricate scales above eye. Laterally, nasals separated from rostral by small scales; eye separated from labials bs 3-4 rows of small seales.

Body scales: Dorsals weally to moderatels keeled, in $21-25$ nonoblique rows at midbody. Ventrals $134-$ 158 ; subcaudals paired, $3 \overline{5}-18$.

VIPERIDAE: Genus Vipera Laurenti, 1768.

'True adders.

Eleven species are recognized. This is an especially variable gromp, with some members that are small and relatively innocuous (e.g. l^{\prime}. bcrus) and others that are extremely dangerous (V. lebctina, V. russclii). They are found from northern Eurasia throughout that contiment and into north Africa. One species ranges into the East Indies (V°. russelii), and two are found in east Africa (see Remarks under V^{7}. superciliaris). Russell's viper and the Levantine riper (p. 111) are the only members of this genus in the region.

Definition: Head broad, distinct from narrow neck: canthus distinct. Body eylindrical, varying from moderately slender to stout; tail short.

Fipes moderate in size to small; pupils verticalls elliptical.

Head scales: Variable: one species (T. wrsinii) has all 9 crown scutes, most species have at least the supraoculars, but even these are absent in one (V . Icbetina): head otherwise covered with small scales. Laterally. nasal in contact with rostral or separated by a single
enlarged scale (the nasorostral), eye separated from supralabials by $1-4$ rows of small scales.

Body scales: Dorsals keeled, with apical pits, in 19-31 nonoblique rows at midbody. Ventrals rounded, $120-180$; subcaudals paired, 20-64.

Russell's Viper, V'iperu msselii (Shaw).
Identification: Head wide, rather long; no enlarged plates on crown: no loreal pit; scales keeled. These features and the bold distinctive pattern readily distinguish this reptile from most other Asian snakes. It may be closely imitated by the harmless Russell's sand boa (Eryx conicus). howerer this snecies has narrow ventrals (less than the width of the belly) and a very short tail.
Color deep yellow, tan, or light brown with 3 rows of large oral dark black-ringed spots which may be narrowly edged with white: the spots of the middle row often fuse on the latter half of the bods; light V or X shaped mark on top of the head; belly pinkish brown to white with black spots.

Iopulations of this riper from Indonesia, Taiwan, China and Thailand are more grayish or olive; there are small spots between the rows of large spots and the belly is suffused with graty posteriorly.

Average length $f 0$ to 50 inches: maximum 65 inches : mates larger than females. The island races average smaller.

Figure 89.-lussell's Viper, V'ipera russelii. The oral black-bordered markings are typical. Photo by R. Van Nostrand. (see also plate V1, tigure 3.)

Distribution: Lastern West I'akistan, most of India, Burma, and Ceslon; parts of Thailand, southeast China, Thiwan, and a few islands of Indonesia. Orer most of its range, a snake of open grassy or brushy country often common around cultivated fields and villages. Occurs in lowlands, but aroids permanently marshy areas. Primarily a hill or momntain snake in some places and has heen recorded at 7000 feet elevation.
hemaris: Mainls nocturnal but occasionally active by day in cool weather. Crawls slowly and is rather phlegmatic in disposition. Hisses loudly when disturbed and strikes with great force and speed.

 mate Imetabloo than the athites.
lonseeld's flper is a lemblitg eatise of smabebite aceddebite in Imila abal ishoma, bat the case fatality rate is lower than in bites log kralts, cobras and saw-seded vibers. The lethat dose of hassell's viper venom for
 250 mas. Dutbentas are produced by the Behrimgerke, Marburis lahn, (iermany; Central lesearch Institute, K゙asmuli. Imlla: Hafkine Institute, Bombay, Inda: Qneen Saowabha Memorial Institute, Bangkok.

CROTALIDAE: Genus Agkistrodon Beauvois, 1799.

Moceasins and Isian pit vipers.
Twelve spectes are recognized. Three of these are in Sorth and Central Ameria; the others are in Asia, with one speries. . C. halyis (latlas) ranging westward to southeastern Europe. The American copperhead (A. (entorflif) atd the Liurasian mamushi and its relatives (A. halus) seldom intlict a serions bite but A. acutus and 1. Thodostoma of southeastern Asia, as well as the cottonmouth (A. piscitorus) of the southeastern United States, are dangerous species (see p. 136 for description of A. acutus).

Definition: Head broad, tlattened, very distinct from narrow neck; a sharply-distinguished canthus. Body Crlindrical or depressed, tapered, moderately stout to stout; tail short to moderately long.

Eyes moderate in size; pupils vertically elliptical.
Head scales: The usual 9 on the crown in most species; internasals and prefrontals broken up into small scales in some Asian forms; a pointed nasal appendage in some. Laterally, loreal pit separated from labials or its anterior border formed by second supralabial. Loreal scale present or absent.

Body scales: Dorsals smooth (in A. rhodostoma only) or keeled, with apical pits, in $17-27$ nonoblique rows. Veutrals $125-174$; subcaudals single anteriorly or paired throughout, 21-68.

Malayan Pit Viper, Aghistrodon rhodostoma (Boie).

Identification: Head triangular, snout pointed, facial pit present. The only Asian pit viper with large scales on the crown and smooth body scales.

Middle of back reddish or purplish brown, sides paler with dark speckling; series of dark brown crossbands, narrow in midline, wider on sides, edged with white or buff; belly pinkish white mottled with brown; top of head dark brown, sides light pinkish brown, the colors separated by a white stripe that passes just above the eуе.

Average length 23 to 32 inches; maximum about 40 inches.

Distribution: Thailand, northern Malaysia, Cambodia, Laos, Viet Nam, Java, Sumatra-apparently requires climate with well-marked wet and dry seasons. Frequents forests generally at low elevations; common on rubber plantations.

Remarks: A bad tempered smake, fulck to strike if disturbert. In northorn Mulaysia it causes apmoxd-

Figure 90.-Malayan l'it Viper, Aghistrodon rhodostomu. This smooth-scaled pit viper is the source of many bites in southeast Asia. Photo by New York Zoological Society.
mately 700 snakebites annually with a death rate of about 2 percent. Weeders and tappers on rubber estates are most frequently bitten. The snake is remarkably sedentary and has often been found at the site of an accident after several hours.

This is another of the oviparous vipers. The eggs are guarded by the female. Antivenin is produced by the Institut Pasteur, Paris; the Institut Pasteur, Bandung, Indonesia; and Queen Saovabha Memorial Institute, Bangkok.

Hump-nosed Viper, Agkistrodon hypnale (Merrem).

Identification: Of typical viperine build with stout body and wide head with facial pit; snout pointed and turned up; large frontal and parietal shields but shields of snout small and irregular.

Grayish, heavily powdered or mottled with brown; double row of large dark spots; belly yellowish or brownish with dark mottling; tip of tail reddish or yellow.

Average length 12 to 18 inches.

Figure 91.-Hump-nosed Viper, Agkistrodon hypnale. Photo by Edward H. Taylor (Preserved specimen).

Distribution: Southern India and Ceylon. Inhabits dense jungle and coffee plantations in hilly country.
Remarks: Often found by day coiled in bushes. It is irritable and vibrates the tail when annoyed. Bites by this snake are seen fairly frequently, but serious poisoning has not been reported. There is no antivenin.

ASIAN LANCE-HEADED VIPERS
 (Trimeresurus)

This large genus, containing some 30 species, is closely related to tropical American lanceheads (Bothrops). All have large triangular heads much wider than the neck. Presence of the facial pit and absence of large plates* on the top of the head (fig. 96) distinguish them from most other snakes within their range. The pupils of the eye are elliptical; the subcaudals may be divided or undivided.

Bites by these snakes are quite frequent; however, the fatality rate is very low. The American polyvalent Crotalid Antivenin (Wyeth, Inc., Philadelphia) shows neutralizing activity against venoms of several $\boldsymbol{\Lambda}$ sian lanceheads. It should be used if specific antivenin is not available.

CROTALIDAE: Genus Trimeresurus Lacépède, 1804.
Asian lance-headed vipers.
About 30 species are currently recognized. All are found in southeast Asia and the adjacent island chains. The large species are dangerous; many of the smaller kinds can deliver a renomous bite which is rery painful, but seldom if ever fatal (see pp. 137-138 for description of other species that enter this region).

There are 3 general groups of these snakes:

1. Large, long-bodied and long-tailed terrestrial suakes that are often brightly-colored with contrasting patterns;
2. Small short-bodied and short-tailed terrestrial snakes, commonly with dull patterns of brown blotches;
3. Small, moderately long-bodied arboreal snakes with prehensile tail, body coloration tending toward unicolor greens, light browns, or light speckles.

Definition: Head broad, flattened, very distinct from narrow neck; canthus obtuse to sharp. Body cylindrical to moderately compressed, moderately slender to stout; tail short to moderately long.

Eyes small to moderate in size; pupils rertically elliptical.

Head scales: Supraoculars present, a pair of internasals often present; remainder of crown covered with small scales. Laterally, a nasal pore in prenasal, 2 enlarged preoculars, ese separated from supralabials bs $1-4$ rows of small scales.

[^11]Body scales: Dorsals feebly to strongly keeled, in 13-37 nonoblique rows. Ventrals 129-231: subcaudals naired, 21-92.

Chinese Green Tree Viper, Trimeresurus stejnegeri Schmidt.

Identification: One of a group of rery similar arboreal pit vipers found throughout much of tropical Asia. All are slender to moderately stout snakes with prehensile tails. In this species the first upper lip shield is not fused with nasal shield and the dorsal seales are keeled.

Body bright green to chartreuse above, sellow to pale green ventrally; white or sellow line on side of bods edged with reddish in male; upper lip sellow or green; iris of eye orange to coppers; end of tail reddish
drerage length about 20 inches.

Fiaure 92.-Chinese Green Tree Viper, Trimeresurus stcjnegeri. Photo hy Isabelle Hunt Conant. (See also plate IV, tiwure ᄅ.)

Distribution: Central and southeastern China includine Taiwan. Occurs chietly in mountainous countrs near streams. Frequents woodland, scrub and semicultivated land.

Pope's Tree Viper, Trimevesumus popeorum Smith. Identification: Semarated from 2 . stcjncacri primarily by the structure of the male sexmal organs; however, the following additional points of difference are noteworths:

1. Iris sellow rather than reddish;
2. Size larger, reaching about 3 feet;
3. Lateral stripe indistinct in adult.

Distribution: Assam and Burma east to Cambodia and south through Malassia and Indonesia. Inhabits hills between 3,000 and 5,000 feet for the most part. Common on tea plantations.

White-lipped Tree Viper, Trimevesurus albolabris Gray.

Identification: First upper lip shield fused with nasal shield; white lateral line in males onls; upper lip pale green, yellow or white; green of body generally somewhat paler than in T. stcjncgeri; iris of ese sellow; end of tail dark red.

Arerage length 15 to 25 inches, maximum 36 inches; females considerably larger than males.

Indian Green Tree Viper, T'rimerestlozes !/melminrlis (l lı: w).

Iflonfifiention: loifters fixath the athere dsian kreen fit vigers la that mast of the thossal sagles dire smonth,

divent bsually will darkere fleokism: disht laterol line
 Mater 1V. tla. © 3 .

flixfribution: l'eusinsulaty Iuclia, chietly in hilly country will dersie matergiowth.

Rommolis: The habits ot these suboreal green vipers
 nisht remainine eniled in vegetation or hidren wnler bark or other cover during the day. They nsually rematin quiet when aphurobleod, but often strike if touched mo otherwise theretened. Thes are reported to be a babline eanse of smakbite acembents in Taiwan, Java, and 'l'hsiland. I'ersuns picking tea, cutting hamboo, or (learime maleryonth are most often injured. Fatalities aro muknown among abults, but have been reported in rlithren.

In antivonin against "Trimeresurus gramincus" fenom was produced by the Taiwan Sermm Viscome Laboratory, 'rapei. Since true T. gramincus does not necur on Thiwan, the antivenin was probably for use agalnst the renom of T. stejnegeri, the common green tree viper of the island.
so far as known, the tree vipers are live-bearing: there are 6 to 2.5 roung in a litter.

Mangrove Viper, Trimerestues mupureomacultifus (Glay).

Ifrntificnfion: General body build about the same as that of the green tree vipers: usually $2-5$ or an seale rows at midoody vs. 10 or 21 in the green vipers.
("olos variable one common variets purplish brown with or withont a whitish lateral line and with or without green spots. Anotler color bhase is olive or gras irregularls spotted with brown. Tail uniformly brown or suoted gray and brown ; belly white more or less rlonded with brown.

Average length 30 to 3.5 inches, maximmm about 40 inches.

Distribution: East Bengal, southern Burma, Malay I'eninsula, Sumatra and Andaman islands. Largely restricted to the seacoast and to islands ; particularly common in mangrove swamps.

Remerlis: I sually found in low vegetation or among bocks. A fatrly common cause of snakebite in coastal Malaya, but fatalities have not been rearded. There is no antivenin against the venom of this snake.

Sea snakes present in this region are discussed in Chapter VIII.

REFERENCES

 chine. II. Basuymu: 'Toulonse, 2 vols. vol. I, 141 pp, It ligs. ; wol. II, $505 \mathrm{ppr}, 189$ figs.
DERANIS I(idUA, I', E. P. 1960. The Taxonomy of the Cobras of Southeastern Asia. Spolia Keylanica, vol. 29, pp. 41-633, fig. 1, pls. 1-4. 19661. The Taxonomy of the Cobras of Southeastern Asia, Part 2. ibid., vol. 20, part 2, pp. 200-232, figs. 1-3, pls. 1-2.
IIAAS, C. P. .J. De. 1950. Checklist of the Snakes of the Indo-Austratian Archipelago. Trenbia, vol. 20, pp. 511-625.
HAIJE, N. S. 1958. The Snakes of Bomeo with a Key to the Species. Sarawak Mus. Jour., vol. 8 (12 n.s.), pp. 743-771, pls. 22-23, figs. a-h.
MNTON, Sherman A. Jr. 1966. A Contribution to the Herpetology of West Pakistan. Bull. Amer. Mus. Nat. Hist., vol. 13t, art. 2, pp. 27-18t, figs. 1-2, pls. 9-36.
ROMER, J. D. 1961. Annotated Checklist with Keys to the Snakes of Hong Kong. Mem. Hong Kong Nat. Hist. Soc. (5): pp. 1-14. ROOIJ, Nelly De. 1917. The Reptiles of the Indo-Australian Archipelago, vol. II, Ophidia. E. J. Brill; Leiden. 334 pp., 117 figs.
SMITH, Malcolm A. 1943. The Fauna of British India including Ceylon and Burma. Reptilia and Amphibia, vol. 3, Serpentes. Taylor and Francis: London. 583 pp., 166 figs., map.
SHIN, Lawrence W. and Nlan E. LEVITON. 1962. The Herpetology of Nepal: a History, Checklist and Zoogeographical Analysis of the Herpetofauna. Proc. California Acad. Sci., ser. 4, vol. 32, pp. 103-147, 4 figs.
TWEEDIE, M. W. F. 1954. The Snakes of Malaya. Government Printing Office: Singapore. 139 pp., 12 pls. 27 figs.
T. I YLOR, Edward H. 1965. The Serpents of Thailand and Adjacent Waters. Univ. Kansas Sci. Bull., vol. 45, no. 9, pp. 609-1096, figs. 1-125, map.
W ALL, Frank. 1928. The Poisonous Terrestrial Suakes of our British Indian Dominions (including Ceylon) and How to Recognize Them. Diocesan Press: Bombay. 173 pp .

Section 9

THE FAR EAST

Definition of the Region:

Inchules the Philippines: Taimon: the Ryykyu and Bonin Islunds: Itupen: Korea, Mongolu,; Siberia; IRussian Far East Asia and the Chinese provinces of Heilungkiang, Kirin, Inner Mongolia, Liaoning. Hopeh. Shantung, Shonsi. Shensi, Vingsiu Tui. Kimsu. IIupeh. Anheci. und hiangsu.

table of CONTENTS

P'age
Map of the region 133
Introduction 133:
Distribution Chart 132
Key to Genera 134
ELAPIDAE:
Brongarus 133
Calliophis 133
Maticora 134
Vaju 135
Ophiophagus 135
VIPERIDAE:
Vipera 135
CROTALIDAE:
Aghistrodom 13.5,
Trimeresurus. 136
References 138
TABLE 13.-DISTRIBUTION OF POISONOUS SNAKES IN THE FAR EAST

		先			$\begin{aligned} & \text { A } \\ & \stackrel{E}{E} \\ & \text { E } \\ & \text { in } \end{aligned}$	Y	析	
ElamPIDAE								
Bungarus multicinctus		X						
Calliophis boettgeri		-	X					
C. calligaster_	X							
(${ }^{\text {c }}$. iwasakii			X					
C. macelellandii		X						
C. sauteri		X						
Maticora intestinalis	X							.
Naja naja_-	X	X			SE			
Ophiophagus hannah_	X						-	-
VILERIDAE								
Vipera berus					N			X
V. russelii.		X						
CROTALIDAE								
Agkistrodon acutus		X			X			
A. halys			?	X	X	X	X	K
Trimeresurus albolabris		?						
T. elegans_			S					
T. flavomaculatus	X							
T. flavoviridis			X					
T. gracilis_		X						
'T. jerdonii					I			
T. monticola		X			S			
T. muerosquamatus		X			S			
T. okinarensis_			X					
T. stejnegeri		X			?			
T. wagleri	X							

ner Mopehgalia. Anwei, Kiangsu, Shenst, Shansi, Honan, Shantung, Hopeh, Liaoning, Kansu. Ningsia Hui. Kirin, Heilungliang and IuCertain groups of adjoining nations or provinces are here treated as units. The symbol X indicates distribution of the species is
widespread within the unit. symbol ? indicates suspected occurrence of a species within the area without ralid literature.

INTRODUCTION

Zoogeographically, it is difficult to delimit or characterize the Far East. Insofar as the snake fauna goes, the southern part of this region closely resembles southeast \boldsymbol{A} sia. There are archipelagoes (Philippines, Ryukyu) with more or less remote and diverse connections with the mainland. These have acted as secondary centers of evolution fostering development of distinctive island races of many snakes. Most of these races are sufficiently similar to mainland forms that they are not considered separately in this manual. The moist tropical climate that characterizes the southern part of the Far East excludes snakes requiring an arid or semiarid environment. Toward the north and inland, the snake fauna rapidly diminishes to a very few species because of the increasingly cold and dry climate.

Many areas in the Far East are densely populated and people live under conditions which expose them to snakebite. Many are engaged in farming and related occupations which may take

Mar. 10.-Section 9, the Far East.
them into the habitats of snakes. The incidence of snakebite is high in some localities, however the mortality is well below that reported in parts
of India and Burma. The reasons for this are not altogether understood. The most important renomous snakes of the Fir East are pit vipers, especially those of the genus Trimeresurus. Cobras are important toward the south. Sea snakes are numerous, but cases of serious sea snake bite are rare.

GENERIC AND SPECIES DESCRIPTIONS

ELAPIDAE: Genus Bungarus Daudin, 1803.

Kraits.

Abstract

Twelve species are recognized; all inhabit the region of southeast Isia. Occasional indiriduals of B. fasciatus attain lengths of 7 feet. Most species are of moderate (4 to $\overline{5}$ feet) length, but all are considered extremely dangerous. i single species, B. multicintus. is found in this rewion (see p p, $12(1-121)$.

Definition: Head small, flattened, slightly distinct from neck; no distinct canthus. Body moderately slender, cylindrical; tail short.

Eyes small ; pupils round or vertically subelliptical. Headscales: The usual! on the crown : frontal hoat. Laterally, nasal in broad contact with single preocular.

Body scales: Dorsals smooth, vertebral row enlarged and hexagonal (strongly so excent in B. lividus), in $13-17$ oblique rows at midbody. Ventrals 193-237; anal plate entire; subcaudals single or paired (all paired only in some specimens of 13 . hungaroides), 23-nt

Maxillary teeth: Two large tubular fangs with external grooves followed, after an interspace, by 1-4 small, feeblr-groored teeth.

ELAPIDAE: Genus Calliophis Gray, 1834.

Oriental coral snakes.

Thirteen species are recognized; all Inhabit the region of southeastern Asia. Most are small species but a few exceed 3 feet in length. At least the larger individuals are considered dangerous. Five species are known from this region (see pp, 121-122).

Definition: Head small, not distinct from body. Body cylindrical, slender and elongated; tail short.

Eres small to moderate in size; pupils round.
Head scales: The normal 9 on the crown; rostral broad and rounded, no canthus. Laterally, nasal in contact with single preocular or separated from it by prefrontal; preocular absent in C. bibroni.

Body scales: Dorsals smooth, in 13-15 nonoblique rows throughout bods. Ventrals $190-320$; anal plate entire or divided.; subcandals usually paired, occasionally single in (${ }^{2}$. macclcllandii $12-44$.

Maxillary teeth: Two large tubular fangs with ex-

1. A. Lomeal pir present !
2. Lomeal pit absent i;
3. A. Sombarged emown shelds T'rimeresurns
4. LEnlareded cown shithes present tglisistrodon
B. A. Enlatged crown shields absent or reduced innumber.1
5. Eight or 9 enlarqed crown shields 5
6. A. Ventrals extending finl width of belly Vipere
7. Ventrals not extending full width of belly or absent NP*
i. A. 'Tail paddle-shaperd Sea snakes see Chapter VIII
[3. 'T'ail not paddle-shaped ${ }^{6}$
(i. A. Loreal scalo present NP
İ. Lameal arale aluern ¡
8. A. Dorsal scales smooth 8
9. Dorsal seales keeled NP
10. A. Vertebral scale row enlarged; subeandals single bungarms
11. Not as above !)
12. A. Body scales in 17 or more rows on neck; hoor seren in life. 10
B. Body scales in 13 or 15 rows on neck; no hood 11
13. A. Occipital shields present; anterior subcaudals single

\qquad
Ophiophagus
B. Occipital shields absent ; subcaudals paired Naja
11. X. Yenom glands in normal position; anal shield usually divided Calliophis
B. Venom glands extended well back into body; anal entire Maticorn
ternal gronves followed, after an interspace, by $0-3$ small teeth.

ELAPIDAE: Genus Maticora Gray, 1834.

Long-glanded coral snakes.
Two species are found in the region of southeastern Asia: from Thailand and the Philippines to Sumatra, Java, Borneo, and Celehes. These snakes are relatively small and slender but individuals of one species, M. bicirgata, occasionally approach 5 feet in length; such indiriduals are believed to be capable of inflicting a dangerous bite (see p. 122, fig. 81). One species, 11. intestinalis, inhabits the Philippines.
Definition: Head small and not distinct from body. Body cylindrical, slender and elongated; tail short.
Eyes small to moderate; pupils round.
Head scales: The usual 9 on the crown; no canthus; rostral broad and rounded. Laterally, nasal in broad contact with single preocular ; eye in contact with supralabial row.
Body scales: Dorsals smooth, in 13 nonoblique rows
throughout body. Ventrals 197-293; anal plate entire; subcaudals paired, $1 \tilde{5}-50$.

Maxillary teeth: Two large tubular fangs; no other teeth on the bone.

Remarks: The only consistent difference between these snakes and those of the genus Calliophis is that Maticora has elongated venom glands that extend posteriorly for about one-third of the body length. The heart has been pushed back to the middle third of the body, where it can be felt (in preserved specimens) as a hard object, thus identifying the genus.

ELAPIDAE: Genus Naja Laurenti, 1768.

Cobras.
Six species are recognized; all are African except the Asiatic cobra, Vija naja, and range throughout the Mfrican continent except for the drifting sand areas of the Sahara region. They are snakes of moderate (4 feet) to large (8 feet) size, with large fangs and toxic renom. The species, N. nigricollis, "spits" its venom at the eyes of an aggressor: it is found in the southern part of the
region of north Africa. The Enyptian cobral (Jajahaje) and the western subspecies of the Asiatic cobra (Naja naja oxiana) are found in the Near and Middle East region. N. maju is the only species in this region (see pl. 123-125).

Definition: Head rather broad, flattened, only slightly distinct from neck; snout rounded, a distinct canthus. Body moderately slender, slightly depressed, tapered; neck capable of expansion into hood; tail of moderate length.

Eyes moderate in size; pupils round.
Head scales: The usual 9 on the crown: frontal short ; rostral rounded. Laterally, nasal in contact with the one or two preoculars.

Body scales: Dorsals smooth, in 17-2.) oblique rows at midbody, usually more on the neck, fewer posteriorly. Ventrals 159-292; anal plate entire; subcaudals 42-88, mostly paired.

Maxillary teeth: Two rather large tubular fangs with external grooves followed, after an interspace, by $0-3$ small teeth.

ELAPIDAE: Genus Ophiophagus Günther, 1864

King cobra.

A single species, O. hanmah, is found in southeastern Asia and the Philippines. It attains a length of 16 to 18 feet, and is considered one of the world's most dangerous smakes (see pp, 125-126).

Definition: Head relatively short, flattened, moderately distinct from neck; snout broad, rounded, canthus indistinct. Body slender, tapering, neck rexion eapable of expanding into small hood; tail long.

Eyes moderate in size; mupils round.
Head scales: The usual 9 on the crown, plus a pair of large occipitals in contact with one another hehind the parietals. Laterally, nasal in narrow contact with elongate preocular.

Body seales: Dorsals smooth, in 15 oblique rows at mibody and posteriorly, more (17-19) on neck. Ventrals 240-2.t; subcaudals 84-104, the anterior ones single, the remainder paired.

Maxillary teeth: Two relatively short fangs (about $1 / 2$ inch in a large specimen) with external grooves followed, after an intersiace, by is small teeth.

VIPERIDAE: Genus Vipera Laurenti, 1768.

True adders.

Eleven species are recognized. This is an especially variable group, with some members that are small and relatirely innocuous (e.g., V. berus, which is found in this region. See p. it.) and others that are extremely dangerous (V. lebctina, V. russelii). They are found from northern Eurasia throughout that continent and into north Africa. One species ranges into the Last Indies (V. russelii), as well as into the southern part of this region (see p. 127).

Definition: Head broad, distinct from narrow neck;
canthus distinct. Body eylindrical, rarying from moderately slender to stont; tail short.

Eyes moderate in size to small; pupils rertically elliptical.
 all 9 crown scutes, most species hare at least the supraoculars, but eren these are absent in one (V. lebetina) : head otherwise covered with small scales. Laterally, nasal in contact with rostral or separated by a single enlarged scale (the nasorostral) eye separated from supratabials by $1-1$ rows of small scales.

Body scales: Dorsals keeled, with apical pits, in 19-31 monoblique rows at midbody. Ventrals rounded, 1こ0-140; subeathals paired, :20-64.

CROTALIDAE: Genus Agkistrodon Beauvois, 1799.

Moccasins ind Isian pit vipers.
Twelve sllecies are recognized. Three of these are in North and Central America: the others are in Asia, with one species. A, hal!ns, ranging westward to southeastern Europe. The American eopperhead (. 1. contortrix) and the Eurasian mammshi and its relatives (.1. halys) seldom inflict a serious bite but . 1. aculus and A. rhoriontomu of sontheastern Asia, as well as the cottonmouth (A. piscirorns) of the sontheastern Inited states. are dangerons species.

Definitom: Head broad, thattened, very distinct from narrow neck; a sharbly-distinguished (anthus. Body colindrical or depressed, fapered, moderately stout to stout ; tail short to morlerately lones.

Eyes moderate in size : phpils vertically elliptical.
Head scales: The usual ! on the crown in most species: internasals and prefrontats broken ub into small scales in some dsian forms; a pointed nasal appendage in some. Laterally, loreal pit separated from labials or its anterior horder formed by secome supralabial. Loreal seale present or absent.

Body seales: Dorsals smowth (in A. rhodostoma only) or keeled. With apical pits, in 17-2す nonohlique

Figure 03.-Head Scales of Agkistrodon halys. Note presence of enlarged head scutes and loreal pit, characteristic of this genus. Redrawn from Maki, 1931.

Sharp-nosed Pit Viper, A!fhistroden ncutus ((iiin) ther).

Iflentificostion: A pit viger wilh the shout endime in
 (5) (1)
dronad color gray or brown with dark brown crossbande marrow at the ceentore of the back, wide on the sides, whe parts often thared with dull orange; belly cream with latgo black spots that externt onto the sides; fonp of head dark bown, stdes below age gellow. The entire eobor scheme shle ests that of the viled states copperhead.

Average lengeth $3=10$ the inches: maximum about 5 feer.

Figure 04.-Sharp-nosed lit Viper, Agkistrodon acutus. The most dangerous pit viper of the Far East. Photo by New York Zoological Society. (See also plate V, figure 1.)

Distribution: southern China, northern Viet Nam, Hainan. Taiwan. Found mostly in rocky, wooded, hilly country.

Remarks: A sedentary snake but alert and irritable; it strikes without hesitation when alarmet. Data from Taiwan indicate it is the most dangerous pit viper of the Far East. Antivenin is produced by the Taiwan Serum Vaccine Laboratory, Taipei.

Mamushi, Agkistrodon hulys (Pallas).
Identification: Over much of its range the facial pit alone suffices to identify this snake. Presence of large crown shields distinguish it from other pit vipers within its range.

Yellowish or reddish brown with wide dark brown crossbands. irregular in outline and margined with black; side of head above eye dark brown or black, below ese pale buff to white; belly white or cream with black blotches. While the pattern and colors of the sharp-nosed pit viper suggest those of the copperhead to an American herpetologist, the mamushi suggests the

Figure 90.-Korean Mamushi, Agkistrodon halys brevicoullus. The Japanese Mamushi, A. hulps b/omhoffii, is similar hat has fewer hotches. Ihoto by New York boological society. (See also phate V, figure 5,
cottommouth mocrasin. The resemblance is probably not coincidental; the American snakes very likely evolved from ancestors that migrated across a land bridge from Asia.

Average length of the mamushi is 20 to 26 inches; maximum about 3 ; inches.

The above account is contined to the subspecies $A g-$ histrodon halys blomohoffii and A. W. brericandus.

Distribution: Japan and the Bonin and I'escadores Islands; Korea; and eastern and northern China. It evidently oceurs in a wide rariety of enviromments from low marshy river valleys to mountains at elevations up to 12,000 feet. It is occasionally found in the environs of Tokso and other large cities.

Remarks: Generally an inoffensive dinmal suake that seeks to escape whenever possible. It flattens its body and vibrates its tail when angry. Despite its mild disposition, some 2,000 to 3,000 snakebites are reported anmally in Japan. Fatalities are known but are most exceptional-about 1 per 1,000 bites. Woodcutters and farmers are most often bitten. Eight of $6 \overline{7}$ patients treated at a metropolitan hospital were bitten while preparing snakes for the table or for "Mamushi Whiskey," a concoction probably more deadly than the snake that goes into its manufacture.

Antivenin is produced by the Institute for Medical Science, Tokyo.

CROTALIDAE: Genus Trimeresurus Lacépède, 1804.

Isian lance-headed vipers.

About 30 species are currently recognized. All are fonnd in sontheast Asia and the adjacent island chains. The large splecies are dangerons; many of the smaller kinds can deliver a venomous bite which is very painful. but seldom if ever fatal.

There are 3 general groups of these snakes:

1. Large, long-bodied and long-tailed terrestrial snakes that are often brightly-colored with contrasting patteras;
2. Small short-bodied and short-tailed terrestrial
snakes, commonly with dull patterns of brown blotches;
3. Small, moderately long-bodied arboreal snakes with prehensile tail, body coloration tending toward unicolor greens, light browns, or light speckles.

Definition: Head broad, flattened, very distinct from narrow neck ; canthus obtuse to sharp. Body cylindrical to moderately compressed, moderately slender to stout; tail short to moderately long.

Eyes small to moderate in size; pupils rertically elliptical.

Head scales: Supraoculars present, a pair of internasals often present; remainder of crown covered with small seales. Laterally, a nasal pore in prenasal, 2 enlarged preoculars, eye separated from supralabials by $1-4$ rows of small scales.

Figure 96.-Head Scales of the Okinawa Habu, Trimeresurus flavoviridis. Note absence of most crown scutes, characteristic of this genus. Redrawn from Maki, 1931.

Body scales: Dorsals feebly to strongly keeled, in 13-37 nonoblique rows. Ventrals 129-231; subcaudals paired, 21-92.

Okinawa Habu, Trimeresurus Havoviridis (Hallowell).

Identification: One of the Asian lance-headed pit vipers; head large, crown with small scales; body slender, gracefully proportioned, tail not prehensile. Scales around midbody 33-37; ventrals 2,231 .

Ground color light olive or brown with elongated dark green or brownish blotches edged with yellow and sometimes enclosing yellow spots; the blotches often fuse to produce wary stripes; underside whitish with dark mottling along the edges.

Average length 4 to 5 feet; maximum $71 / 2$ feet; it is the largest of the Asian lance-heads.

Distribution: Restricted to the Amami and Okinawa islands where it is common on the larger islands of volcanie origin, but is never seen on the smaller coral islands. It is most frequently found in the transition zone between cultivated fields and palm forest, living in rock walls, old tombs, and caves.

Remarks: An active, mostly nocturnal snake that

Figure 9\%-Okinawa Habn, Trimeresurus flaroririalis. Photo by Robert E. Kuntz. (Lee also plate IV, tigure $\mathrm{B}_{\text {.) }}$)
frequently enters dwellings and other man-made structures probably in search of rats and mice. It is a bold and irritable reptile striking with great rapidity and long reach. In the dmami ishands the incidence of shakehite is very high about $\ddot{2}$ per 1.000 population. Fortunately, habn venom is of low toxicity and only about 3 percent of the bites are fatal: however, another 6 to 8 percent have permanent disability as a result of the hite.

Antivenin against $T^{\text {r }}$. flaroriridis renom is produced by the Institute for Medical science, 'lokso, and the Laboratory for Chemotherapy and Serum Therapy, Kiumamoto, Japan.

The habu is one of the comparatively few pit vipers that lays egzs.

The himehabu (Trimeresurus okinatensis) has much the same distribution as the habu but is a smaller. heavier snake. It is sluggish and rarely causes suakebite. The sakishima habu (T. clegans) (plate IV, fig. (i) is a smaller version of the Okinawa habn and occurs in the southern Ryukyus. It has $\mathbf{1 8 0} \mathbf{- 1 9 1}$ ventrals and 66-77 subeandals.

Figure 98.-Himehabu, Trimercsurus okinavensis. Whoto by Robert E. Kinntz. (See also plate IV, figure 6.)

Chinese Habu, Trimeresurus mucrosquamatus (Cantor).

Identification: Very similar to the habus of the Ryukyus; has $19 x-219$ rentrals and $76-96$ subcaudals; $23-27$ scale rows at midbody.

Grayish brown to buff or olive: three rows of darker sray or brown spots with narrow yellow edges; those of middle row largest, occasionally fused to form a broken

 lowe

 ＇raber．

Chinese Mountain Viper，I＇irmeresurls montionlu （iijutl！
ldentifienfion：I pit viper of deojeledly starekier builal

 ＊いもc：ablals．

Gras or olive sperkled with black：selies of lareve sumarish brown or redelish hlotehes：top of head dark browa or black sometimes with lisht loshapeal matrk： helly white mottled with dark brown．

IVeratur lemath is to $31 / 2$ feet，maximum about 4 feet．

Figrbe 99．－Chinese Mountain Viper，Trimeresurus mon－ ficola．I＇looto by New Vork Zonlogicall Society．（See alko plate V．figure 3．）

Distributinn：Nepal eastwald across mainland China and south throumh the Malay Peninsula．T＇sually fonnd in wooded monntainoms（onmers to elevations of about s．onm feet．

Remorlis：Iaty egiss that are gitarded by the mother． These nostins females ame said to be somewhat sullen and irritable；othervise it is a placid slngrish snalie． No antivenin is avalable．
Wagler＇s Pit Viper，Trimeresm＇us u＂ug7eri（Boie）． Tolentificution：Stont with unusually wide head and prehensile tail：scales hetween exes and on chin and throat strongly kepled．

Artults green with black－edged scales or black with scattered green spots：broad crossbands，green above shading to sellow on sides：head black above sioles Sellow or greenish；belly greenish mottled with sellow ； tail black．Voung，sreen with a regular row of spots． each one half white and half red：tail redrish．There is a good deal of color variation，esnecially in the Philip－

 plate IV，fifure I．）
bines．Soms populations are almost mbiform green， others tend to retain the jusemile pattern．＇The keeled throat soales are diagnostic thronghont the range．
dverage lohigth 30 to 3 S．fuches：maximum shout 40 inclows．

Distribution：Thailamd，Malassia，Indomesia，Jorneo sunt the lhilippines．A common snake of lowland jungle ancl flantations．
liemurkes：A tree suske of remarlably slugeish and gentle disposition at least daring the day．It is some－ times kent wnoonfined in temples or tolerated about dwellings as an omen of rood luck．＇lhe fenom is fairly toxic for animals amd present in good ghantits，so the snake is rapmble of inflicting a dangerons bite．No specific antivenin is available．

The sea snakes are discussed in Chapter VIII．

REFERENCES

KIV＇T゙\％，Robert E．196\％．Snakes of Taiwan． IT．S．Naval Medical Reseath Unit No．2： Taipei，Taiwan，pp．1－79，color pls．，text figs． （not numbered）．
LENT＇TON，Mlan E．1961．Keys to the Danger－ ously Venomons Terrestrial Snakes of the Philippine Islands．Silliman Jour．，vol．8， pp．98－106，figs．1－2．
POPE，Clifford．1935．The Reptiles of China． Nat．Hist．Cent．Asia，vol． 10 New York， pp．i－iii＋1－60t， 27 pls．figs．，map．
STEFNEGER，L．1907．Herpetology of Japan and Idjacent＇Territory．Bull．U．S．Nat． Mus．，vol．58，pp．i－xx，1－577， 35 pls.
WHERLER，John E．and Hugh L．KEEGAN． 196\％．Venomons Snakes of the Pacific Area． In Tenomous and Poisonous Animals and Noxious Plants of the Pacific Region．（H． L．Keegan and W．V．MacFarlane，eds．） Pergamon Press：Oxford，pp．219－325，figs． 1－78．

Section 10
 AUSTRALIA AND PACIFIC ISLANDS

Definition of the Region:

Includex the continent of Austrulin amel the islemds of Ocemnin ernst of Itrpm. the liyukyus. and the I'hilippines amel past of "line dramen between Timon' (including the offshome istand of Jour) and the Tramimbar /slamds. amd between Celebes aml the islamls of liusin amd Ilalmuhera.

TABLE OF CONTENTS

Page
Map of the region $1+1$
Introduction 141
Distribution Chart 143
Key to Genera 144
ELAPIDAE:
Acenthophis 146
A pistocalamus. 146
Aspidomorphus 146
l'rurrheytapis 14
Brechyurophis. 147
Demansid 147
Denisonia 148
Elapognather. 149
Glyphodon 149
Hoplocephalus 149
Micropechis. 150
Notechis 150
Ogmodon- 151
Oxyuramus 151
P'arapistocalames. 152
Pseudechis. 152
Rhinoplocephatus 153
Rhynchoelaps 153
T'oxicocalamus. 154
Tropidechis 154
Illtrocalamus 154
Termicella 155
References 155

Poisonous Snakes of the World

INTRODUCTION

Most of the islands of the Pacific Ocean have no poisonous land snakes, although those in equatorial waters are likely to have poisonous sea snakes just offshore (See Chapter VIII). In addition, some of the poisonous snakes that do occur on islands are so small that they cannot be considered a hazard to man.

Australia and New Guinea have large numbers of dangerously poisonous snakes but of the islands east of New Guinea only the Solomons have poisonous snakes which can even remotely be considered dangerous. The Fiji Islands, for example, have a poisonous snake (Ogmodon vitiremus) but it is so small (15 inches) that its killing power is limited to the small animals on which it feeds. Further, it is so rare that most island residents have never seen it!

Australia, on the other hand, is the only continent which has more kinds of poisonous than nompoisonous snakes. More than 60 percent of Australian snakes are poisonous and some are highly dangerous. Yet of the 60 species of poisonous land snakes that inhabit Australia, only about 16 are considered to be dangerous to an adult man. Several of these have rather restricted ranges and are not found in areas of high human population. For a country with such a high number of poisonous snakes, Australia has amazingly few deaths from snakebite - the ammal rate being estimated at 1 in $2,000,000$.

In New Guinea, just to the north, fewer than 25 percent of its snakes are poisonous. Of the 16 species of poisonous snakes, only 6 are considered highly dangerous and 4 of these are restricted to the southeastern coast adjacent to Australia. Thus, only 2 species, the death adder and the ikaheka snake, are of concern elsewhere on the island. The remainder of the poisonous species outside eastem New Guinea is made up of small burrowing snakes or species resembling whip snakes whose bites are of minor consequence.

Aside from sea snakes which are found offshore and in some of the rivers and lakes (see Chapter VIII), the poisonous snake fauma of this region is made up entirely of members of the cobra family (Elapidae). Although they are all elapids, none is a true cobra; none has a cobratype hood (though several flatten the neck-or
even the whole body) and none stands up straight in cobra fashion as a threat. Many of the dangerous snakes of this region resemble North American whip snakes and since they lack any special physical characteristic (such as the rattle of the rattlesnake or the facial pit of the pit riper) or any unusual beharioral features, they

Map 11.-Section 10, Australia and Pacific Islands. (Includes the Pacitic Ocean eastward to the coasts of the Americas.)
are particularly difficult to distinguish from nonpoisonous species.

True, the dangerous death adder has the appearance of a viper (which it isn't), but other dangerous species look like harmless racers, rat snakes, or king snakes. About the only way to identify a poisonous suake from this region is to kill it and look for fangs. (Chapter III, fig. 5). Even this is not a foolproof method because some
TABLE 14.-DISTRIBUTION OF POISONOUS SNAKES OF AUSTRALIA \& THE PACIFIC ISLANDS (continued)

 valid literature.
${ }^{2}$ Recently shown to be based on young individunls of Oxyuranus.
Shown to be hased on misidentitied spectmen of hasupelfis.
sperobes havo very shont fangs that may be diflicult fodistimgnish from the other teeth unless a microscope is at hamd.

Elapid smakes typically lack a sealo on the sidn of tho face (loreal) which most colnbrid shakes have. This means that only 2 scales lie between the nostril and the eye instead of the 3 that aro seen in most harmless smakes. (A few kinds, e.q., (ylyphodon, on rave occasions have a vertical suture through the preocular, forming a "loteal.") Any snake that lacks this scalo should be viewed with suspicion. Fortunately, too, a rather large proportion of the harmless snakes of this region are pythons, boas, blind snakes, or highly specialized water snakes. These are much easier to distinguish from elapids than are the
colubride, which the the most common snakes 0lsewhero (Seo Chapter VI).

It is woth remembering, too, that almost all of the dangeronsly poisonons kinds of snakes in this region live on the gromed. Only the Austratian broad-headed smakes (IIoplocephatus), among poisonous species, are adapted for life in the trees and they are not considered highly dangerous. Otherwise, only the tiger smake of southern Australia has been reported to climb into low bushes. There are no highly specialized dangerous tree snakes such as the mambas of Africa or the tree vipers of southeast \mathbf{A} sia and tropical America. There are many species of burrowing elapids in Australia, but none appears to be highly dangerous.

KEY TO GENERA

1. A. 'I'ail paddle-shaped 2
2. 'Tail not paddle-shaped 3
\because. I. No enlarged crown shields NP*
3. It least some enlarged crown shields Sea snakes
(see Chapter VIII)
B. A. Iorsal scales smooth: no trace of a keel 6
B. Dorsal scales with a distinct keel 4
4. A. Eye separated from upper labials by a row of small subocular scales; pupil elliptical Acanthophis
B. Eye touching upper labials; pupil round 5
5. A. Dorsal scales roughly keeled; fewer than 220 rentrals Tropidechis
B. Dorsal scales with a low keel; more than 220 rentrals Oxyuranus
6. A. Ventrals extend full width of belly 7
B. Ventrals extend half the width of the belly or less NP
T. A. Ventrals with a lateral keel and notch Hoplocephalus
B. Ventrals rounded; no keel or notch 8
7. A. Eye with a round pupil 12
B. Eye with an elliptical pupil 9
8. A. Only six lower labials A pistocalamus
B. Seven or more lower labials 10
9. A. Anal plate divided; subcandals paired throughout_-_ Aspidomorphus
B. Anal plate entire; at least some subcaudals single 11
10. A. More than 18 rows of dorsals, slightly oblique at midbody Brachyaspis
B. Fewer than 18 rows of dorsals, not oblique at midbody Denisonia
[^12]
KEY TO GENERA (continued)

12. A. Eye small; its length considerably less than its dis- tance from lip 18
B. Eye moderate to large, its length about equal to or more than distance to lip 13
13. A. First row of dorsals conspicuously broader than adjacent row; dorsal count 17 posteriorly, 17 or 19 at midbody Pseudechis
B. First row not conspicuously broader; if dorsal count 17 posteriorly, more than 19 at midbody 14
14. A. At least some of subcaudals paired 17
B. All of subcaudals single 15
15. A. Body very short (fewer than 150 ventrals) and rather stout Elapognathus
B. Body moderately long (more than 150 ventrals) and rather slender 16
16. A. Frontal long, 1.5 to 2 times longer than broad; dorsals not oblique Denisonia
B. Frontal short, almost as wide as long; dorsals dis- tinctly oblique Notechis
17. A. More than 227 ventrals Oxyuranus
B. Fewer than 228 ventrals Demansia
18. A. Body moderate to slender (fewer than 227 ventrals) 21
B. Body exceedingly long and slender (more than 226 ventrals) 19
19. A. A preocular present; 2 to 3 small teeth following fangs after an interspace (Australia)

\qquad Vermicella
B. No preocular; 4 to 5 teeth of decreasing size follow- ing fang without an interspace (New Guinea) 20
20. A. A long terminal spine which is keeled above; inter- nasals distinct Toxicocalamus
B. Terminal spine obtuse, not keeled; internasals fused with prefrontals Ultrocalamus
21. A. Nasal in contact with preocular 24
B. Nasal separated from preocular (if present) by prefrontal 22
22. A. Fewer than 156 ventrals (Fiji) Ogmodon
B. More than 155 ventrals (Australia, Solomons) 23
23. A. Nasal barely touches 2nd labial Glyphodon
B. Nasal extends well over 2nd labial Parapistocalamus
24. A. Rostral broad and free at sides; subcaudals single__ Rhinoplocephalus
B. Rostral not free at sides; subcaudals paired 25
25. A. Tail very short, fewer than 31 subcaudals (Aus- tralia) 26
B. Tail longer, more than 30 subcaudals (New Guinea and the Solomon Islands)26. A. Rostral large and shovel-shaped, with a sharp edge...-. Brachyuroph isB. Rostral without a sharp edge27
27. A. Nasal in contact with first three upper labials Rhynchoelaps
B. Nasal in contact with first two labials only Vermicella

GENERIC AND SPECIES DESCRIPTIONS

ELAPIDAE: Genus Acanthophis Daudin, 1803.

beath mblems.

 1. athtaretions. dathes whely wer the region: the wher, 1. purrous. is bitte kibuwn and is restricted to the decert armas wit central abd western Dustratia. . anfarctions is one of the most deably as well as one of the bust whereproat smakes of the regron.

Hefintion: Wead howal, Hattened, and distinct from neck: a distimet canthus rostratis. Body thick and tepressed: tall short with a lobs terminal spine.

Lyes moderate in size : pupils vertically elliptical.
Heal scales: The usual 9 on crown, somewhat ronkhened with raised edges: supraoculars broad, werhangine eye. liye separated from smpatabials by a row of small subochlars.

Body scales: Dorsals distinctly keeled and pointed, in 23-23 rows at midbody. Ventrals $11: 3-135$; amal phate entire: subeaudals mostly sincle, some terminal ones paired. 40 -J̈: a terminal spine made up of several scales.

Maxillary teeth: Two long recurved fings followed. after an interspace. ly $\because-3$ small teeth.

Death Adder, Acanthophis antarcticus (Shaw).
Identification: Extremely viperlike in appearance. Average length 18 to 24 inches: record is 36 inches.

Body color gras, brown, reddish, or yellowish with a more or less distinct pattern of irregular narrow dark crosshands. I pair of diverwins dark markings on top of head. The long spine at the end of the tail is light vellowish or flesh-colored.

Distribution: Foumd thronghont Anstralia except for the central desert regions, on Melville Island and New

Figure 101.-Death Adder, Acanthophis antarcticus. The most viperlike of all Australian elapid snakes. Photo by W. A. Pluemer, National Audubon Society.

 In Justralia it usuatly inhables deg serub aream bint has bern fonnd also in tain forest regions in Coram and Nex (buinca.
licmorlis: The death adder is active mainly at night abl tembe to he slagisish during the day. It often conceals itself in stad or dost and wenerally defends itself bather than retreat from sheh concealment. When disfurbed it flatlens the putire body and strikes ont with viperlike speed. Nthough its fangs are short as compared with those of a siper, they are quite long for an claphid. It is an estromely dangerons smake and without treatment with specific antivenin the mortality rate has averaged about ह̈ percent.

Antivenin ("Death Adder") is produced only by the ($o m m o n w e a t h$ Sermm Laboratories of Australia.

ELAPIDAE: Genus Apistocalamus Boulenger, 1898.

Five species are recognized, all in New Guinea. They are small burowing snakes with poorly-defined fangs. Only one (1. gramdi.) attains a length of over 2 feet; it is known to grow to 37 inches. None is believed to be highly dangerons. though any elapid more than 2 feet long should be treated with respect.

Definition: Head small, somewhat flattened, and not distinct from body ; body slender; tail short with distinet terminal spine which has a dorsal keel.

Eyes very small: pupils vertically elliptical.
Head scales: The usual 9 on crown, supraoculars short, parietals long. Single preocular in contact with nasal or narrowly separated from it by second supralahial.

Body scales: Dorsals smooth in 15 rows throughout body. Ventrals 173-2ers; anal divided (entire in one species, A. lamingtoni); subcaudals usually paired (a few or all occasionally single), 22-59.

Maxillary teeth: Two small fangs followed, without an interspace. by $3-1$ teeth that gradually decrease in length.

ELAPIDAE: Genus Aspidomorphus Fitzinger, 1843.

Crowned snakes.
Eight species are known. Two of these inhabit New Guinea and neighboring islands, the others are restricted to Anstralia. All are small ; the largest attains a length of about 30 inches. None is considered dangerous to man.

Dcfinition: Head flattened and distinct from neck; body moderately slender to stout; tail relatively short, without an elongated spine.

Eyes small; pupils vertically elliptical in most ; round in A. mucllerii (schlegel).

Head scales: The usual 9 on crown, supraoculars long; preocular generally in contact with nasal.

Body scales: Dorsals smooth, in 15 rows throughout body or in 17 rows which may be reduced to 15 posteriorly. Ventrals 139-203; anal plate divided; subcaudals paired throughout, $20-62$.

Maxillary teeth: Two large fangs followed, after a wide interspace, by $\mathbf{7}-10$ small teeth.

ELAPIDAE: Genus Brachyaspis Boulenger, 1896.

Bardick.

The single, little-known species (B, curta) is found in southwestern Anstralia. It is small, attaining a length of about 20 inches, and is capable of delivering a very painful, though not a lethal, bite.

Definition: Head large and distinct from the neck; an obtuse canthus rostralis. Body short and relatively stout; tail short.

Eyes small; pupils vertically elliptical.
Head scales: The usual 9 on the crown; frontal long and broader than supraoculars. Nasal usually in contact with preocular, but may be narrowly separated from it by prefrontal.

Body scales: Dorsals smooth in 19 slightly oblique rows at midbody reduced to 15 or 13 posteriorly. Ventrals, 128-138; anal plate entire; subcaudals single, $30-$ 35.

Maxillary teeth: Two large fangs followed, after an interspace, by $2-5$ small teeth.

ELAPIDAE: Genus Brachyurophis Günther, 1863.

Girdled snakes.
Seven species are currently recognized. They inhabit most of Australia except for the humid southeastern coastal regions. All are small sand-dwelling, burrowing species and are not believed to be dangerous.

Definition: Head short and not distinct from neek; snout distinctly pointed; no canthus rostralis. Body moderately slender with little taper; tail short.

Eyes small; pupils round.
Head scales: The usual 9 on the crown; rostral shovel-like with sharp anterior edge and with an angulate rear edge that partly divides internasals. Laterally, nasal in contact with preocular.

Body scales: Dorsals smooth, in $15-17$ nonoblique rows at midbods. Ventrals $133-170$; anal plate divided; subcaudals paired, 17-27.

Maxillary teeth: Two moderately large fangs with external groove followed, after an interspace, bs a single small tooth.

ELAPIDAE: Genus Demansia Gray, 1842.

Brown snakes and whip snakes.
Six species are currently recognized, two of which are highly dangerous to man. Both D. textilis and D.
oliracea are found in southeastern New Guinea as well as on mainland Australia: the latter oceurs also on Melville Island. The other species are restricted to mainland Australia.

Definition: Head elongate with a distinct canthus rostralis, only slightly distinct from neck. Body slender and racerlike; tail long and tapering.

Eyes large; pupils round.
Head scales: The usual 9 on the crown; frontal long and narrow. Laterally, nasal in contact with single preocular.

Body scales: Dorsals smooth, in 15-21 rows at midbody, more anteriorly and fewer posteriorly. Ventrals $167-225$; anal plate divided ; subcaudals paired throughout. 44-92.

Maxillary teeth: 'Two relatively short fangs followed, after an interspace. by $8-13$ small teeth.

Black Whip Snake, Demansia olivacea (Gray).

Identification: This snake superficially resembles the harmless racers and whip snakes of North America and Eurasia. However, the short snout, with only two scales between nostril and eye, warns of its elapid relationship. Adults average $\&$ to $\overline{\mathrm{a}}$ feet; occasional individuals exceed 6 feet.
Rich brown above, fating to a greenish-blue underneath. Each body scale edged with hack; skin between scales with many irregular light stiphle marks. A dark collar sometimes present; the entire coloration becomes darker towarl the tail. Head sometimes spotted, with or without light markings on sides.

Dorsals in 15 rows at midbods; ventrals $180-200$; subcaudals 60-10.\%.

Distribution: Found in open sandy areas of northern Australia, southeastern New Guinea, and on Melville Island.

Remarks: The black whip snake is active during the day. It is fast-moving and normally inoffensive. Ordinarily it will flee if able. However, if injured or cornered it will defend itself tiercely and may inflict several bites in rapid succession. The bite of a large individual is presumed to be dangerous.

A polyvalent antivenin ("Brown Snake") is made for this group of smakes by the Commonwealth Serum Laboratories of Australia.

Australian Brown Snake, Demansia textilis (Duméril, Bibron and Duméril).

Identification: Head narrow and deep, slightly dis* tinct from neck. Adult snakes arerage 5 to 6 feet; record length about i feet.

Body color almost any shade of brown, ranging from light grayish tan, through reddish brown, to dark brown. Juveniles mar have a series of distinct narrow crossbands (about 35 on body, 15 on tail) plus a dark collar. Most adults almost unicolor abore. Many hare conspicuous dark spots or blotches on the cream, gray, or sellowish belly.

Dorsals in 17-19 rows at midhody; ventrals $184-225$; subcaudals 45-75.

Distribution: Whlety distributed theothoh tho driee

 どatc|l|luls

Figure 102.-Australian Brown Snake, Demansia textilis. This fast-moving suake is probably responsible for more deaths in Australia than any other snake. Photo by Eric Worrell.

Remarks: This is a fast-moving and agile snake that becomes aggressive if disturbed. When aroused it flattens its neck and raises it from the ground in an Sshaped loop. Large individuals should be treated with respect. Due to its common occurrence and toxic venom, it may be responsible for more deaths than any other Australian snake. It will strike repeatedly if antagonized.

An antirenin for this group of snakes ("Brown Snake") is produced br the Commonwealth Serum Laboratories of Australia. "Taipan" antivenin, also produced by Commonwealth, may be used also.

ELAPIDAE: Genus Denisonia Krefft, 1869.

Australian copperheads and ornamental snakes.
Nineteen species are recognized by Klemmer (1963: $290-204$) ; excent for a single species, they are all Australian. The interrelations of the smakes of this genus are not clear and Worrell (1963: 190. 192) does not believe that all belong to the same genus. Only 2 of the species appear to be highly dangerous. One of these is found in southeastern Australia and Tasmania (D. superba), the other (D. par) in the Solomon Islands.

Definition: fload small to morlorato in siza ant not dlsefnct or onty shighty disthet from the noek. A fatrly distime rembthas in some sperfes, relatively indistinet In others. Body moderatoly stont to relatlvely slemiter: Inll short.

Eyes moternto in slza ; pupils vertically elloptical in somer, ronnd in others.

Head scales: The typical 9 on the crown, frontal distinctly longer (1.5 to 2 times) than broat. Laterally, nasal in contact with proocular.

Hody scales: Dorsals smooth, in 15-17 rows at mldbody, fewer posteriorly. Ventrals 129-191; anal plate entire; subcaudals single in most species, paired in D. par woodfordii of the Solomons, 25-50.

Maxillary teeth: Two short fangs followed, after an interspace, by 3-10 small teeth.

Solomons Copperhead, Denisonia par (Boulenger).

Identification: Body moderately slender, slightly compressed; head somewhat tlattened, distinct from neek. Adults average approximately 30 inches in length; record length a little more than 36 inches.

Body with a lustrous sheen. The color varies from sandy-brown through pink, reddish, and gray, to almost unicolor black. Faint, irregular crossbars may be visible but usually coloration is uniform with scale edges darker than centers.

Fyes molerate in size; pupils round or subelliptic.
Dorsals in 17 rows at midbody, reduced to 15 posteriorly. Ventrals $16 t-181$; anal plate divided or entire; subcaudals $38-53$, single (D. p. par) or paired (D. par coodfordii).

Distribution: Widespread in the Solomon Islands; not yet reported from Bougainville, Choiseul, or the islands south of Malaita and Guadalcanal. Found in rain forest, grasslands, and cocoamut plantations.

Remorlis: Two other elapid snakes occur in the Solomons. D. par differs from Parapistocalamus hedigeri (so far known only from Rougainville) in having a longer tail (more than 37 subcaudals) and 2 postoculars; from Micropechis clapoides in having fewer ventrals (less than 185). See Williams and Parker (1904) for additional features.

This snake is considered potentially dangerous but nothing has been recorded on the effects of its bite.

Australian Copperhead, Denisonia superba (Günther).

Identification: Body moderately stout with short tail. Head flat and fairly broad, only slightly distinct from neck. Adult length arerages 4 to 5 feet; record length (a Tasmanian specimen) about 6 feet.

Body color extremely variable. Coppery or reddish brown over much of its range; blackish or reddish with an obscure dark stripe down back in Blue Mountain region; a black back with yellowish or whitish sides in Bowral region. Sometimes (in Queensland) entirely black. Coloration of labial scales distinctive in Alpine specimens: each scale bicolored, upper and rear parts
dark, lower and front parts edged with oblique dash of cream color.

Eyes with round pupil.
Dorsals in 15 rows at midbody; ventrals 145-160; 40-50 single subcaudals.

Distribution: Tasmania and the southern coastal region of Australia. Mainly an inhabitant of coastal mountain swamps; found in area from Victoria to New England ranges and at Mount Gambier and Kangaroo Island, South Australia.

Remarks: This is one of the best known of the venomous snakes of southern Australia. It is a dangerous but rather sluggish and inoffensire snake. It is unlikely to bite unless stepped on or picked up. Few bites are reported, but they have been serious.
"Tiger Snake" antivenin is commonly used for treatment of its bite. This is manufactured by the Commonwealth Serum Laboratories of Australia.

ELAPIDAE: Genus Elapognathus Boulenger, 1896.

Little brown snake.
The genus contains a single, little-known species (E. minor) that grows to a length of about 18 inches. It is found only in the southwestern section of Western Australia and is not considered dangerous.

Definition: Head small and only slightly distinct from neck. Body cylindrical and moderately stout; tail moderate in length.

Eyes rather large; pupils round.
Head scales: The usual 9 on the crown. Laterally, the long nasal is in contact with the single preocular.

Body scales: Dorsals smooth but finely striated, in 15 rows at midbody; fewer (13) posteriorls. Ventrals 120-130; anal plate entire; subcaudals single, 52-68.

Maxillary teeth: Two moderately large fangs; no other teeth on the bone.

ELAPIDAE: Genus Glyphodon Günther, 1858.

Australian collared snakes.

Three species are recognized. One (G. tristis) is found in southeastern New Guinea and some of the nearby islands in addition to the mainland of Australia; the others are restricted to Australia. One species grows to a length of 3 feet, but all reportedly refuse to bite even when teased, and are not considered dangerous.

Definition: Head small and slightly distinct from neck; no canthus rostralis. Body cylindrical and moderately slender ; tail rather short.

Eyes small; pupils round.
Head scales: The usual 9 on the crown. Laterally, the prefrontal extends down to separate the nasal from the preocular.

Body seales: Dorsals smooth in 15-21 rows at midbody; species with 15 or 17 rows at midbody show no reduction posteriorly. Veutrals 163-190; anal plate di-
vided; subcaudals paired (a fetv anterior ones single in a single specimen), 28-52.

Maxillary teeth: Two large fangs followed, after an interspace, by $6-10$ small teeth.

ELAPIDAE: Genus Hoplocephalus Wagler, 1830.

Australian broad-headed smakes.
Three species are currently recognized; all are Australian. Thes appear to be the only Australian elapid snakes that are specialized for arboreal life. Only one of the species, H. bungroites, attains a large enough size to be a danger, though probably the others also can deliver a painful bite.

Definition: Head broad and distinct from the slender neck; no canthus rostralis. Body relatively slender; tail moderately long.

Eres moderate in size; pupils round.
Head scales: The normal 9 on the crown: frontal rather long. Laterally, nasal in contact with preocular. Body seales: Dorsals smooth, in 21 rows at midbody, fewer posteriorls. Ventrals laterally angulate and notched (a typical indication of a treesuake), 210-227; anal plate entire; subcaudals single, $40-60$.

Maxillary teeth: Two short fangs followed, after an interspace, by 4 small teeth.

Remarks: Three $\&$ enera of harmless colubrid tree suakes also oceur in Australia. All may be distinguished from Hoplocephalus by a loreal scale, (giving is scales between nostril and eye) and a longer tail (more than so subcatudals, all paircd).

Australian Yellow-spotted Snake. Hoplocephalus bungaroides (Boie).

Identification: The broad head and eyes with roundpupils; angulated, keeled, and notched rentral scutes, and moderately long tail distinguish this snake. Adnls average 3 to $\&$ feet in length; some individuals attain a length of - feet.

Ground color black or dark brown. Nilmerons conspicuous fellow spots form irregular crossbands or a broken network over the body. Tail solid black or almost so.

Dorsal scales in 21 rows at midbody ; 214-221 ventrals ; $40-60$ subeaudals.

Distribution: Australia: the mountains and coastal regions of southern Queensland and New South Wales.

Remarks: This snake is active mainly at night. It is often found in trees and on rocky slopes. It is said to be aggressive and will attack with little prorocation.

The reported bites have been intlicted bs small (3foot) individuals. They caused violent headaches with vomiting; both vision and breathing were affected. In one case the victim hemorrhaged from the gums and had local pain, discoloration, and swelling that persisted for sereral days. The bite of a large snake might be lethal.

No specific antivenin is arailable for this group of snakes, but "Tiger Snake" antirenin (Commonwealth) is recommended for use.

ELAPIDAE: Genus Micropechis Boulenger, 1896.

Pavitio comal smakes.

I'wo spectes are currently recogntaed. One of these
 the other, Mieroperhis ilapobeles (Bonlenger), with a disthact banded pattern, is found on Fiorida, Guadaemmal. Jalata and leabel istands in the solomons. There are few repurts of bites from either of these species. However, they attaln lengths of 5 feet and are considered dangerous.

Definition: Head fairly distinct from neek; snout pointed. Body moderately stout, cylindrical; tail short. Eyes very small; pupils round.
Head scales: The usual 9 on the crown; rostral broad and obtusely pointed. Laterally, nasal in contact with preocular.

Body scales: Dorsals smooth in $\mathbf{1} \tilde{\mathbf{u}} \mathbf{1 7}$ rows throughout body. Ventrals 178-223; anal plate entire or divided; subcaudals generally paired (a few occasionally entire) 3"-55.

Maxillary teeth: Two moderately large fangs followed, after an interspace, by 3 small teeth.

Ikaheka Snake. Micropechis ikaheha (Lesson).
Identification: Adults average between 3 and 4 feet in length; occasional individuals attain lengths of $\mathbf{5}$ feet.

Body coloration made up of yellow (or tan) and black (or brown) scales. Black scales roughly arranged in irregular crossbands but each is edged with yellowsometimes to the extent that the pattern is lost. In specimens from eastern New Guinea the pattern may be lost on the anterior one-third of the body which is brown, but the crossbands persist posteriorly. Belly color yellow with some scutes edged with black.

Dorsals smooth and glossy, in 15 rows at midbody. Ventrals 178-203: $37-55$ subcaudals.

Distribution: New Guinea and nearby islands: Aru, Batanta, Mefoor, Mios Num, Misool, Jobi, Mansinam, and Valise.

Remarks: This appears to be the only kind of smallered burrowing snake in the Australian-New Guinea region that grows to a size large enough to be a possible hazard. Little seems to be known of its habits; it is apparently a nocturnal or a burrowing species that is seldom seen out during the day. However, at least one death has been reported from its bite. "Tiger Snake" antivenin (Commonwealth Serum Laboratories of Autralia) has been recommended (E . Worrell) for treatment of envenomation from this snake.

ELAPIDAE: Genus Notechis Boulenger, 1896.

Australian tiger snake.
A single species, N. scutatus, is currently recognized; it has several geographic races and is found in southern Australia and some of the offshore islands. It possesses one of the most toxic renoms known in snakes.

Definition: Head relatively broad, flattened, and
 rostralis. Body relathely stout, Ilattened dorsovers. trally; eall rather short.

Figure 103.-A Black 'Tiger Snake, Sotechis. Althongh only one species of tiger snake is recognized by most workers, Eric Worrell believes these black forms to be a distinct species (Votcchis atcr). Photo by Eric Worrell.

Eyes moderate in size; pupils round.
Head scales: The usual 9 on the crown; frontal wide and shield-shaped. Laterally, nasal in contact with preocular.

Body scales: Dorsals smooth in 17-20 oblique rows at midbody; fewer posteriorly. Yentrals 160-18t; anal plate entire; subcaudals single, 43-59.

Maxillary teeth: Two rather long fangs followed, after an interspace, by $3-5$ small teeth.

Australian Tiger Snake, Notechis scutatus (Peters).

Identification: Adult snakes are 4 to 5 feet long in most parts of the range, but they may exceed 6 feet in Victoria and Tasmania. A record length of 8 feet was reported for a specimen from Chappell Island.

Figure 104.-Australian Tiger Snake, Notechis scutatus. The most dangerous snake of southern Australia. Photo by Isabelle Hunt Conant. (See also fig, 103)

Ground color varies from yellowish, greenish-gray, orange, and brown to black. The most common pattern is a creamy-yellow ground color banded with gray. Most individuals show a large number of narrow dark bands but those with dark ground colors may be almost unicolor.

Dorsal scales with pointed tips.
Distribution: Tasmania and southern Australia from the border of Queensland to the coastal areas of South Australia. This species inhabits wet areas with rocks and brush.

Remarks: The tiger snake is the most dangerous snake of southern Australia. It is actire at night and not aggressive until molested. The greatest danger appears to be from stepping on the snake in the dark. Often there are few local effects from the bite, but the systemic effects are swift and grave.

A specific antivenin (Tiger Snake) is produced by the Commonwealth Serum Laboratories of Australia.

ELAPIDAE: Genus Ogmodon Peters, 1865.

Fiji snake.

A single species, O. vitianus Peters, is known from Viti Levu and perhaps from other islands of the Fiji group. It is a small burrowing snake; reported lengths are under 20 inches. It is not believed to be a dangerous species.

Definition: Head small and not distinct from neck; no canthus rostralis; snont pointed. Body crlindrical and moderately slender; tail short.

Eyes small; pupils round.
Head scales: The usual 9 on the crown; internasals very small, prefrontals very large and in contact with eye. Laterally, nasal fused to first upper labial; small

Figure 10.--Head Scales of Fiji Snake, Ogmodon vitianus. The top of the third upper labial is often separated as a preocular. Drawing by Samuel B. McDowell.
preocular elongate, not in contact with nasal, commonly fused with third upper labial.

Body scales: Dorsals smooth, in 17 rows throushout body. Ventrals 139-152; anal plate divided; subcaudals paired, 27-38.

Maxillary teeth: 'Two small fangs with external grooves followed, without an interspace, by 5-6 grooved teeth that gradually decrease in length toward the rear.

ELAPIDAE: Genus Oxyuranus Kinghorn, 1923.

Taipan.

A single speries, o. scutchlatus, is rerognized; it is found in northern Australia and southeastern Niew Guinea. The taipan reportedly reaches a length of 11 feet. With its long fangs and large sumply of very toxic renom, it is considered to be one of the most dangerous snakes living todar.

Dcfinition: Head clongate and narrow but distinct

Fioure 106.-Taipan, Oxyuranus scutcllatus. The great size and toxic renom make this snake, potentially, one of the most dangeroms snakes in the world. Photo bs Eric Worrell.
from neck: a distinct canthus rostralis. Body elongate and celindrical; a moderately long tapering tail.

Eyes large; pupils round.
Head scales: The usual 9 on the crown. Laterally, nasal in contact with preacular.

Body scales: Dorsals with low but distinct keels, in 21-23 rows at midbods, reduced to 17 posteriorly. lentrals 230-245; anal plate entire; subcaudals 50-72, all paired.

Maxillary teeth: Two long recurved fangs followed, after an interspace, br $2-3$ small teeth.

Taipan, Oxyuramus scutellatus (Peters).
Identification: Adult taipans average 6 to 7 feet in length; a record specimen was 11 feet long.

Body color is coppery or dark brown in Australian specimens, grayish-black with a reddish-orange stripe along the rear part of the body in New Guinea types.

There seates are as deserthed in the fernerte dellatton.
Distribution: The talpan lubabtes Lrasslands and savanmat areas In mortherg Disatallat Melville Island. and coastal New dialneg trom the Fig blver castward to the efednity of lopt doresty. It appears to be most abumbant aronall rocks ambl bublders. where it lives in rodent bursows.

Remurks: The tapan is aetive during dayight hours and also on hot nights. It will usualts attempt to esdape if disturbed, but mas hecome a dangerous adversary if seriously threatened. When provoked it dattens its hend, compresses the neck vertically, and expands the body so that the white skin shows between the scales. Alopting a defensive attitude of loose loops, it arches part of the body off the ground and waves its tail. It then attacks so swiftly and suddenty that the victim mas be bitten several times before he can defend himself or escape.

This large snake has fangs that are very long for an clapid (over $1 / 2$ inch in a 7 foot individual) and its venom is one of the most toxic known. Few people survived its bite before a special antivenin was arailable.

A specific antivenin ("Taipan") is now produced by the Commonwealth Serum Laboratories of Australia.

ELAPIDAE: Genus Parapistocalamus Roux, 1934.

Hediger's snake.
A single species, P. hedigeri Roux, is known from Bougainville Island, Solomons group. It is a small burrowing snake; the largest known specimen is about 20 inches in length. It is not believed to be a dangerous species.

Definition: Head small and not distinct from neck; no canthus rostralis; snout conspicuously blunted. Body cylindrical and moderately slender; tail short.

Eyes very small ; pupils round.
Head scales: The usual 9 on the crown; frontal and prefrontals very broad; rostral broad. Laterally, preocular present or fused with prefrontal; if present preocular in contact with nasal or separated from it by prefrontal.

Body scales: Dorsals smooth, in 15 rows throughout body. Ventrals 159-169; anal plate divided or entire; subeaudals paired, $32-3 \overline{5}$.

Maxillary teeth: Two fangs of moderate size; no other teeth on maxillary bone.

ELAPIDAE: Genus Pseudechis Wagler, 1830.

Australian black snakes and mulga snakes.
Four species are recognized. Three are Australian but one of these (P. alistralis) also occurs in southeastern New Guinea. Another species, P. papuanus, is found only in southeastern New Guinea and some of the offshore islands. Both of these species are dangerous.

Heflition: Hosad rather elongate, only stightly dislinet from beck: a distinet conhthes rostralls. Body depressad nobl moderately slender; tall moderate in length.

Byes moderate in size ; pupils round.
Hearl seales: The usinal 9 on the crown. Laterally. masal in contact with preocular.

Body scales: Dorsals smooth and glossy, in 17-21 rows at midbody, reduced to 17 posteriorly. Ventrals $180-230$; anal plate divided; anterior subcaudals usually entire, posterior ones paired, 48-70.

Maxillary tecth: 'Iwo short fangs followed, after an interspace, by 3-0 small teeth.

Australian Mulga Snake, Pseudechis austratis (Gray).

Identification: Adult snakes usually measure 5 to 6 feet; a record specimen was "over 9 feet in length."

Body color copuer brown. Usually each scale has a red or orange tip and a lighter center, giving a reticulatel pattern. Belly cream or yellowish with faint oranges blotches.

Dorsal scales in 17 rows throughout body. There are $180-220$ ventrals; $50-70$ subcandals, of which about the first 30 are entire, the remainder paired. (The two known specimens from New Gninea have all entire.)

Fiudre 107.-Australian Mulga Snake, Pseudechis australis. Photo by Eric Worrell.

Distribution: This snake is an inhabitant of the dry areas in the northern half of Australia, southern New Guinea, and Melville Island.

Remarks: This large brown snake is often mistaken for the taipan; however, its perfectly smooth scales and fewer ventrals distinguish it from the latter.

The mulga snake is large and relatively aggressive, and will defend itself if held or cornered, flattening the body and neck and striking repeatedly. It will hold on when it bites and chews hard, thus injecting more renom. However, it does not attack unless provoked and its venom rarely causes death.

No specific antivenin is produced but Taipan, Tiger Snake or Papuan Black Snake antivenins are used in treatment; they are all produced by the Commonwealth Serum Laboratories of Australia.

Papuan Black Snake, Pseudechis papuanus Peters

 and Doria.Identification: Adults are 5 to 7 feet in length.
Body color black or brown, both above and below. Chin whitish. There is no distinct color pattern.

Dorsal scales in $19-21$ rows at midbody, 17 rows posteriorly. Ventrals 216-226; subcaudals 49-58, of which the first 21-38 are single, the posterior ones paired.

Distribution: Found only in southeastern New Guinea, Frederick-Hendrik Island, and Iule Island.

Remarks: This snake is closely related to the Austratian mulga snake. It is active during the day. Although little is known of its habits, it has a more toxic venom than its relatives.

A specific antivenin ("Papuan Black Snake") is produced by the Commonwealth Serum Laboratories of Australia.

Red-bellied Black Snake. Pseudechis porphyriacus (Shaw).
Identification: The average adult size is 5 to 6 feet; record length about 7 feet.

Figure 108.-Red-bellied Black Snake, Pscudcchis porphyriacus. I'robably the best known of the poisonous snakes of Anstralia. Photo by Eric Worrell.

Bods color a uniform glossy murplish-black above, and red, pink, or bright orange below.

Dorsal scales in 17 rows throughout body. Ventrals 180-210; 48 66 subcaudals, of which the first 5-20 are usually single, the remainder paired.

Distribution: Swamps, coastal areas, and forested regions of eastern and southern Australia (Queensland, New South Wales, Victoria, and South Australia). It is a good swimmer and is often seen crossing rivers and bays.

Remarks: This is one of the most common and best known of the renomous snakes of Australia. It is active during the day. It is shy and will avoid human contact if given the opportmity. However, it will defend itself with a number of feinted strikes if cornered. Although it bites only under considerable provocation, more bites are recorted for this snake than for any other Australian suake. Less than one percent of the bites are fatal, however, and it is not reuerally considered a deady suake.
"Tiger Snake" antirenin, produced by the Commonwealth Sermm Laboratories of Anstralia, is used in the treatment for its bite.

ELAPIDAE: Genus Rhinoplocephalus, Müller, 1885.
Mïller's snake.
A single species, R. bicolor Miller, is known from southern Western Australia. It is small, up to about 16 inches in length, and is not believed to be dangerous. Amost nothing is known of its habits.

Definition: Head small and only slightly distinct from neck: snout brond and hattened. Body cylindrical and moderately slender; tail short.

Eres small ; pupils round.
Head scales: Intermasals absent, piving 7 instead of the usual 9 scales on the crown; rostral rery broad and slightly free from the other scales on the sides. Laterally, nasal in contact with preocular (with the lower preocular when there are two).

Body seales: Dorsals smooth, in 15 rows at mid. body; reduced to 13 posteriorly. Ventrals 149-159; anal plate entire; subcaudals single, 28-34.

Maxillary teeth: Two fangs of moderate size followed, after an interspace, by $2-4$ small teeth.

ELAPIDAE: Genus Rhynchoelaps Jan, 1858.

Desert banded snake.

Two species are currently recomnized; both inhabit the dry regions of Anstralia. Neither attains a length of more than 16 inches; they are not considered danserous to man.

Definition: Head small, flattened above but not distinct from neck; snout prominent, with obtusely angular edge; canthus rostralis indistinct. Body cylindrical, moderately slender; tail short.

Eyes small; pupils round.
Head scales: The usual 9 on the crown: rostral broad, obtusely angulate posteriorly; frontal long, much

 sulw:2ublals palded. $1 \overline{0}-2.5$.

 small trollo.

ELAPIDAE: Genus Toxicocalamus Boulenger, 1896.
F:1ongente suakes.

 inches: they have shont fithes athe are bot considered

Definifion: Headl small abme not distinet from neck:
 fail short. with distinet termanal spine.

Eyes very smatll: pupils roumd.
Heant soales: The usual a on the crown. Laterally there is mo beocular, the prefrontal extends downward to supralabials liehind nasal.
bouly scales: Dorsits smooth, in 1a-17 rows throughont bouly. Ventrals $230-30.5$: anal plate divided or en-
 atted shad compressed, with a keed above.

Figure 109.-Maxillary Bone of Toxicocalamus. Notice fangs and maxillary teeth gradually decreasing in length posteriorly. This is characteristic of a number of elapids in the Pacific Regrion. Drawing courtesy of Charles M. Bogert.

Maxillary teeth: Two short fangs followed, without an interspace, by $4-\bar{n}$ teeth that gradually decrease in length toward the rear.

ELAPIDAE: Genus Tropidechis Günther, 1863.

Rough-sealed suakes.
Two species have been described from eastern coastal Australia, neither of which grows to a length of more

 fall modrataly lonk.

Head scolles: The usial ! scates on the remwn.

Borly seales: Dorsals heavily lieered in e3 rows at
 candals single or paired, हo--it.

Maxillary teeth: Two lotge fothg followed, after an interspace, by 4-5 small teeth.

ELAPIDAE: Genus Ultrocalamus Sternfeld, 1913.

Ahort-finged snake.
A single species is known from New Gninea and the offshore island of seleo. None of the specimens are as long the so inches. The spectes is not considered danserols.

Definition: Head small and not distinct from neck; no distinct canthns rostralis. Boily exlindrical and quite slender; tail short with hlunt tip.

Vyes very small; pupils round.
Head scales: Internasals absent, leaving 7 scales on crown. Laterally there is no preocular, the prefrontal extends downward to supralabials ; a small postocular present but parietal extends down to supralabials so that there is no anterior temporal.

Figure 110.-Head Scales of Ultrocalamus. Notice absence of preocular, temporals, and internasals characteristic of this genus. Drawing courtesy of Charles M. Bogert.

Body scales: Dorsals smooth, in 13-15 rows throughout body. Ventrals $280-330$; anal plate entire; subcaudals paired, $20-54$, terminal spine short and flattened.

Maxillary teeth: Two small fangs followed, without an interspace, by $4-6$ teeth that gradually decrease in length toward the rear.

ELAPIDAE: Genus Vermicella Günther, 1858.
Bandy-bandys.
Fire species are recognized. All occur in Australia. None appears to exceed 3 feet in length and they are not considered dangerous.
Definition: Head small and not distinct from neck; no canthus rostralis. Body rather slender and cylindrical ; tail very short and obtusely pointed.

Lyes very small ; pupils round.
Head scales: The usual 9 scales ordinarily present on crown; the small internasals sometimes fused to prefrontals, giving 7 scales. Laterally, nasal in contact with preocular and first 2 supralabials.

Body scales: Dorsals smooth, in 15 rows at midbody. Ventrals $126-234$ (one specimen had 285) ; anal plate divided; subeaudals paired, 14-30.

Maxillary teeth: Two moderately large fangs followed, after an interspace, by $0-3$ small teeth.

REFERENCES

(See also General References)
BOGERT, Charles M., and Bessie L. MATALAS. 1945. Results of the Arehbold Expeditions. No. 53. A Review of the Elapid Genus IUltrocalamus of New Gininea. Am. Mus. Novitates 1244: 8 p., 10 figs.
KINGHORN, J. R. 1956. The Snakes of Australia. 2nd ed. Angus \& Robertson Ltd., Sydney. 197 p., illustrated in color.
KINGHORN, J. R., and C. H. KELLAWAY. 1943. The Dangerous Snakes of the SouthWest Pacific Area. Victorian Railways Printing Works, North Melbourne. 43 p., 11 text figs., 3 pls.

LOVERIDGE, Arthur. 1945. Reptiles of the Pacific World. MacMillan Co, New York. 259 p., 7 pls.
LOVERIDGE, Arthur. 1948. New Guinean Reptiles and Amphibians in the Museum of Comparative Zoology and United States National Museum. Bull. Museum Comp. Zool., 101 (2): 305-430.
ROOIJ, Nelly de. 1917. The Reptiles of the Indo-Australian Archipelago. Vol. II. Ophidia. E. J. Brill Ltcl., Leiden. $33 ; 1 \mathrm{p}$., 117 text figs.
WERLER, John E., and IIugh L. KEEGAN. 1963. Venomous Snakes of the Pacifie Area pp. 217-325, figs. 1-78. In H. L. Keegan and IV. V. MacFarlane. Venomous and Poisonous Animals and Noxions Plants of the Pacific Region. MacMillan Co., New York.
WHLLAMMS, Emest E., and Fred PARKER. 1964. The Snake Genus Parapistocalamus on Bongainville, Solomon Islands (Serpentes, Elapidae). Senckenbergiana-Biol., $45(3 / 5): 543-552$, figs. $1-5$.
WORRELJ, Eric. 19633. Dangerous Snakes of Australia and New Guinea. 5th ed. Angus \& Robertson Ita., Sydney: 68 p., illustrated.
WORRELL, Eric. 1963. Reptiles of Australia: Crocodiles, Turtles, 'Tortoises, Lizards. snakes.
Angus \& Robertson Ltd., Sydney. 207 p ., $6 t$ pls. (some in color).

Chapter VIII

DISTRIBUTION AND IDENTIFICATION
 of POISONOUS SEA SNAKES

TABLE OF CONTENTS

Distribution Chart 158. 160
Introduction. 15!
Key to Genera 15!), 161
HYDROPHIDAE
Laticauda 163
Enhydrina 16:
Aipysurus 16.
Astrotia 164
IIydrophis 164
Microcephalophis 166
Lapemis 166
Pelamis 166
References $16 i$
TABLE 15.-DISTRIBUTION OF SEA SNAKES

INTRODUCTION

The sea snakes comprise a group of some 50 species all of which have strongly flattened oarlike tails used as sculls. In addition most species have nostrils opening on the top of the head, a body that is flattened from side to side, and very small ventral scutes that may be difficult to distinguish from the adjoining scales. The scales of several kinds of sea snakes are juxtaposed rather than overlapping as in most land snakes. The only snakes likely to be confused with sea snakes are the elephant-trunk snakes (Acrochordus) and the river snakes (Enhydris and others); these have round or slightly flattened tails, but young elephant-trunk snakes have tails as paddle-shaped as those of some sea snakes. However, all sea snakes have enlarged crown shields and the ele-phant-trunk snakes have only small juxtaposed scales. Eels are frequently confused with sea snakes; however, no sea snake has fins or gill openings, and none has a smooth skin without scales.

Sea suakes are reptiles essentially of south Asian and Australian coastal waters with a few species found well out into Oceania (Society and Gilbert islands). One species, the pelagic sea snake (Pelamis), occurs far out into the open ocean ranging across the Pacific to the western coasts of Central and South America and south to New Zealand and the Cape of Good Hope. No sea snake is found in the Atlantic, although the pelagic sea snake may eventually find its way through the Panama Canal and become established in the Caribbean. The greatest numbers of both species and individuals are found in warm shallow waters without surf or strong currents. Mouths of rivers, bays, and mangrove swamps are especially farored. Many species of sea snakes enter brackish or fresh water occasionally; two species are restricted to lakes.

The biology of sea snakes is poorly known. There is general opinion that they can remain submerged long periods-perhaps a few hours
depending upon temperature, degree of activity, and other factors. The depths to which they can dive are also unknown. An observer in the Philippines saw the snakes swim down out of sight in very clear water. Types of bottom dwelling fish found in stomachs indicate the snakes dive at least 20 to 30 feet to capture food. They are often seen at the surface in calm weather, and some species aggregate there in vast numbers. The reasons for this behavior are unknown, but they may be related to breeding.

There are reports of both diurnal and nocturnal activity. In the Arabian Sen, some species range 10 to 20 miles off shore during the calm winter months but tend to seek coastal mangrove swamps during the monsoon storms. Their young are born in these swamps. Sea snakes feed largely upon fish. Eels are a favorite food of sereral species. At least a few species eat prawns and one species feeds on fish eggs.

Sea snakes are generally mild tempered reptiles, although both individual and species variation exists with respect to this trait. In open water they either seek to escape or remain almost indifferent to swimmers. Stranded on beaches, some species are almost totally helpless. Others crawl with varying degrees of facility. None can strike on land but most can turn to make an awkward smapping bite. Bites are usually seen when the snakes are slapped, kicked, or trodden upon in shallow water or when they are remored from nets, traps, or other fishing gear.

Some kinds of sea snakes are extensively used for hmman food in China, Japan, and parts of Polynesia.

While some sea snake species can be identified readily by the amateur, many are puzzling even to experienced herpetologists. Color and pattern are extremely deceptive in this family. There are close similarities between remotely related species and marked differences between young and adults of the same species as well as a good deal of variation among adults of the same species.

KEY TO GENERA

TABLE 15.-DISTRIBUTION OF SEA SNAKES (continued)

[^13]2. A. Nostrils lateral; nasal shields separated by internasals (fig. 111A), 4 species; widely distributed from Bay of Bengal to central Pacific

Laticauda
B. Nostrils dorsal; nasal shields in contact with each other (see fig. 111B)
3. A. Tail distinctly paddle-shaped; head shields entire or broken up
I3. Tail but slightly paddle-shaped, almost round; head shields entire (single species, small and rare)
4. A. Snout smoothly rounded; fangs followed by sereral small teeth on maxillary bone (Six or γ species of moderate to large size; found from Gulf of Siam to Coral Sea but mostly in Justralian and New Guinea waters. Larger species potentially dangerous but nothing known of renoms.)
13. Snout has blunt spine directed forward; fangs very small, no other maxillary teeth (single species ranging from Ryukyus to Australia: inefficient biter; probably not dangerous; venom unknown) \qquad Emydocepha7us
5. A. Yentrals distinct on at least the posterior half of the body, not normally split, usually a little larger than adjacent scales
13. Ventrals, except quite anteriorly, divided by a fissure or very small and not well differentiated from adjacent scales
6. A. Mental shield elongated and concealed in cleft. (fig. 111 C) ; ventrals often not well differentiated on

Figure 111--A. Top of head of sea krait (Laticaula) showing separation of nasals br internasals; B. Top of head of sea suake showing nasals in contact with each other; C. Lower jaw of beaked sea snake showing elongate mental in cleft between chin shields.
anterior half of body. W'idely distributed, ahmmdant speces-most dangerons of sea smakes E'nhydrine
13. Mental shiede normat: ventrals wefl differentiated the entitw lenget of the body 7
7. I. Head shiedds entire: masal shields in contact with each other. 8
B. Head shields more or less divided 11
S. A. Preocular shield absent; tail not strongly paddle- shaped; ventrals atmost one fourth width of belly. Single, small, brightly colored species; not believed dangerous Mydrelaps
B. Preocular shied present; tail distinctly padde- like; rentrals smaller, at least on posterior half of belly 9
9. A. Scale rows around middle of body 19-23. Single species found in Indo-Malaysian waters and locally plentiful. Bites have been reporterl, but are not serious Keritia
B. Scale rows around middle of body 25 or more 10
10. A. Ventrals decidedly large on anterior quarter of body, much smaller posteriorly. Single species, widely distributed, renom unknown Praescutata
B. Ventrals more or less same size entire length of the body. 'Iwenty-two species widely distributed; in several species bite produces death Hydrophis
11. A. Nasals contact each other. Scales around eye with spiny projections; body scales with pointed keels. Single rare species; large and consid- ered dangerous Acalyptophis
13. Nasals separated by internasals; no spines on head; body seales without pointed keels 12
12. A. Dorsal scales in $31-35$ regular rows at midbody. Single species Thalassophis
B. Dorsal scales very small, in 75-93 irregular rows at midbody. Single species Kolpophis
1:3. A. Head very small, neck long and slender. Two species, one widely distributed Microcephatophis
B. Body form not as above 14
14. A. Dorsal scales overlapping (imbricate). Single large species Astrotia
B. Dorsal scales juxtaposed 1515. A. Head elongated, flat; all body scales quadrangular,generally equal in size. Single species withwidest distribution of any sea snakePelamis

KEY TO GENERA (continued)

B. Head short, chunky; 3 or 4 rows of larger scales on flanks; anterior ventrals often enlarged. Two species range from Persian Gulf to Japan and south to Australia. Considered dangerous

Lapemis

SPECIES DESCRIPTIONS

Yellow-lipped Sea Krait, Laticauda colubrina (Schneider).

Identification: Species of this genus are less flattened and more like conventional land snakes than are other members of the famils. They can be readily identitied by the combination of flattened tail. enlarsed rentral scutes, and laterally placed nostrils. In this species the pattern consists of black or dark brown bands encircling body and separated by interspaces of pale blue or hine gray ground color: these are about as wide as the bands ; snout and upper lip yellow; dark stripes through eye and on lower lip; belly sellow:

Figure 112.-Y lellow-lipped Sea Krait, Laticauda colubrina. Photo by Robert E. Kuntz.

Maximum length about $41 / 2$ feet, average 3 to $31 / 2$ feet. Females are larger than mates.
licmarks: One of the few sea snakes that regularly leaves water to climb onto rocks and pilings. Terrestrial activity usually takes place at night. Eggs are deposited in caves and crevices. Very mild dispositionno report of bite in man althongh the suakes are freely handled by many natires. Venom of fairly high toxicity but very small in quantity.

Beaked Sea Snake, Enhydrina schistosa (Dandin).

Identification: The distinctive feature of this sea snake is the form of the lower jaw. The shield at the tip of the chin (the mental) which is comparatively wide and large in most snakes is, in Enhydrina, reduced to a splinterlike shield buried in a cleft between the first pair of lower labials (fig. 111C). This gives greater flexibility to the lower jaw and widens the gape thus permitting the snake to seize and swallow large prey. The down
chrved tip of the rostral is unsually prominent in this shake giving it a characteristic beaked protile. Head shields large, symmetrical: head rather small, vers little wider than neck: boly moderately stont, strongly compressed: skin especially on neck rather loose; scales kepled: rentrals poorly differentiated, often indistinanishable on anterior part of body.

Adults miformly dull olive green above or pale areenish gray with dark crosshands that tend to fuse anteriorls: cream to dirty white on sides and belly ; head ereenish above without marking: tail usually mottled with hack. New horn goung are milk white with erosehands that almost encircle the body: top of head blark olive, tail black.

Arerage adult length 3 in + feet with females apprecibhy latree than males: maximum a little under if feet.
licmatis: A shallow water snake found osar both muld and sand bottom and often very plentiful at the mouthe of rivers. In great deltas sildel as those of the Ganges and Indus, Euhblima has heen fomd in channels many miles from the open spa. It has not been reported to leave the water volmutarily and is very

Figure 113.-Beaked Sea Snake, Enhydrina schistosa. Photo by Sherman A. Minton.
awkward although not completely helpless on land. In Indian waters, soung are born from March through July. The average brood numbers 4 to 9 .

The renom of the beaked sea smake is the most toxic of the better known snake renoms, the lethal dose for experimental mammals being 50 to 12.5 micrograms/

 It is ofthastrity att ithstersive reptilo hut will hite it reo

Olive-brown Sea Snake, Lipysurns lienis Latcépede.
flemfifionfion: In seat sumbers of this gembs the nostrils arte dorsatl in pusition atne the shielals on the top) of the head atre smatl hat rexilime in arrangement. The vedtrals are well developed extemdins at least one-third the width of the loaly. . lim!amras lactis is a very heavy suthor ofter as thick as a mam's arm ; the body is slightly thatteberb revticably. 'Ihbe head is latrae and a little wider that the werk: the emal of the tail is uswally racged.

Alults are moiformly olive brown or may have at row of dark spots on the thanks and belly.

Miximann length alomit feet: average $41 / 2$ to 5 feet.
Remuths: Clumsy on land, it apparently does not leave water voluntarily althongh it is often found stranded ou beaches.

Vothing is known of the venom nor are there reliable reports of bites.

Stokes's Sea Snake, Atstrotiol stokesii (Gray).
filentification: Like the olive-brown sea snake (.limy-

Figure 114. Stokes's Sea Snake, Astrotia stokesii. Photo by Edward H. Taylor (Preserved specimen).

 wlive fo sellowtish.
 (i) fort: latigo spereimens atro about 10 inchers fut kirth.
 there is at report of a vast akgregation sightod in Malaceat sitrat on the the of May. 'Tho shatice were disposed in at line about 10 fert wide and some 60 miles
 ofen water atud is not often taken by native lisherment. 'lhere are no repmited bites by this specofes and its venom has never heen stmbed.

The sea snake genus Mydrophis is a puzzling one from the standpoint of classification, and exact identification of most of the 25 or so species requires expert opinion. These smakes have the characterist ic sea snake features of laterally compressed body and tail, nostrils located on the top of the head in masal shields that are in contact with each other, small eyes with round pupils and alosence of the loreal shield. The rentrals are small but generally larger than the adjoining scales and form a distinct series that in large adults of many species is transformed into a keel or ridge. The four species described here are common, widely distributed, and show something of the range of variation encountered.

Figure 115.-Yellow Sea Snake, Hydrophis spiralis. Photo by Sherman A. Minton (Preserved specimen).

Yellow Sea Snake, IIydrophis spiralis (Shaw).
Identification: Head of moderate size and distinct from the neck which is not particularly slender or elongated; body moderately slender, not strongly compressed. Head shields large and symmetrical; the tip of the rostral shows a slight downward prolongation that fits into a notch in the tip of the lower jaw; usually one anterior temporal; body scales smooth or weakly keeled. There is an increase of no more than 8 scale rows be-
tween a count made on the neck and one made at the middle of the body.

Color golden yellow to yellowish green shading to pinkish white below; body encircled by black rings that are widest along the vertebral midline and narrow on the flanks, alwass much narrower than the interspaces separating them: head miformly rellow in the adult, dark with a yellow horseshoe shaped mark on the crown in the soung.

This is apparently the longest of the sea snakes, although Aipyswos and Asfrotion exceed it in bulk. Adnlt rellow sea snakes frequently reach a length of $51 / 2$ to 6 feet, and a record length of 9 feet is reported.

Remarks: Very little information is on record concerning the habits and biology of this sea smake. It seems to frequent deep water and often basks at the surface.

Venom yields from this suake are surprisingly small (3 to 10 mg .) and toxicity lower than for most sea shake renoms, nevertheless several fatalities are on record from the bite of this specties.

Annulated Sea Snake, Ilydrophis cyumocinctus Dandin.

Idcutification: Head smaller, neck longer and more slender and body more compressed than in the rellow sea suake. Head scales simitar to those of the rellow sea smake except that there are nsually $\ddot{2}$ anterior temporals. Body scales with central licel or row of tubercles. Increase of more than 8 (usually 10 to $16 i$) seale rows hetween count at neck and combt at midhodes.

Finure 116.-Head Scales of Itydrophis cyanocinctus. (See also plate VI, tig. 4.) Redrawn from Maki, 1931.

Color dirty white, pale greenish, gellow or olive with hackish corosshamts that mas or may not encircle the body, are widest along the vertebral midline and are as wide as, or wider than, the interspaces between them. Head in adult olive, reddish, or dull rellow; in young blackish with the yellow horseshoe mark seen in some other species.

The adult length averages $41 / 2,2$ to $51 / 2$ feet with record specimens of about $61 / 2$ feet.

Remartis: This snake frequents mangrove swamps hat has heen collected 12 to 20 miles offshore during winter. Although it has not been seen to leave the water voluntarily, it crawls fairly well and can lift its head well free of the ground. It often bites if restrained.

Venom sields reported from this smake are approximately double those reported for the yellow sea snake, and the toxicity is somewhat hisher: I ata from Malaya indicate H. cyomorimefus cillses more deaths than any sea snake species except the beaked sea suake.

Reef Sea Snake, IIydrophis armutus (Gray).

Identification: A large headed, stout bodied sea snake: body saales small, juxtaposed, with a central tubercle that is more strongly developed in the male: increase of 12 to 20 scolle rows between combt at neek and count at midboly. The combination of regular head shields with masals in contact with each other and small. undivided remtals of almost miform size the entire length of the body will usually differentiate this species from other sea snakes of similar body build.

Figure 117.-Head seales of Mydrophis ornatus. Note regular head seltes and contact of masals. IRedrawn from Maki. 1!:31.

The tybical form is pale greenish white whe or sellow with wide dark erosshathe or rhomberd sots. The lead is olive. The Philippine subspecies is uniformly erayish green abose and whitish below. A subspecies with sputted or ocellate markings on the sides occurs in Anstralian waters.

Arerage length is es to 3.7 inches; maximm abont 4.5 inches.

Remarks: This sea snake has a vers wide range extending from the lersian Gulf to the central lacilice and from the lellow sea to Australia. It is plentiful in some localities, e.f. Manila bas, but very rare and apmarently only a straggler in many others. It evidently frequents shallow water, for dozens have been taken in one han of a heach seine. At least one fatality is ascribed to its bite.

Banded Small-headed Sea Snake, IIydrophis firsriutus (sclmeider).

Identification: Certain species of the genms Myarophis and the two species of Mirrocophatophis are remarkable for their tiny heads and long slender necks. This peculiar body form is most evident in the adult;

 dark banda that are whlest in the midtlo of the bate. bitt tanere to points laterally: beck dark olfe to blate What yellow spots or crosshars ; heal uniformly dark.

The mandman leneth does sor exceed of fert : average epredmens are about 3 feet.

Remerkis: The heary body gives stahility in toating while the smatl head and lome slender need premit the shake to explore holes and crevices in seareh of the erols abd other elongate tishes that are its food. In wimmine free. the head and beck are held straight and almost motionless. This species is reported to be mimatrily wocturnat in the lehilippines.
smatl-headed seat shakes are among the least prolitie uf snakes, females wiving birth to only 1 or" $\ddot{-}$ goung in : 1 seatsoti.

Althonsh it is diflicult to imagine these reptiles biting effectively, there is at least one fatality ascribed to the bite of a small-headed sea suake. Venom gields are minute (less than 1 ms. per snake), but the venom is extremely toxic, being about equal to that of Enhydrina (1). 16:3).

Other widely distributed small-heads of the semms Hyhlophis include H. belcheri of Australian and leacitic seas and H. brookei. H. caerulescens, and H. klossi of Indo-Malaysian waters.

Graceful Small-headed Sea Snake, Microcephalophis gracilis (Shaw).

Identification: This snake differs from the banded small-headed sea snake in certain features of the skull

Figure 118.-Graceful Small-headed Sea Snake, Microcephalophis gracilis. The small end is the head. U.S. Nars photo.
and in the type of rentrals which are distinctly wider than the adjacent scales on the slender part of the body but become smaller and fragmented posteriorly; the ventral count does not exceed 300 .

Sblertor part of benty lackmbing beat black for dark blive wfth whfte or yellow spets or hates posterior phet pate pellow for premish with darkog arosthatal or tulforat stay afowe and light laterally and ventrally.

Hardwicke's Sea Snake, Lapem is Jurd wicliii (iray. Ifonlification: A rather short, stocky sert snake; heald chanky, wider than neck; rostrall with is stubby downward projections bitting into mothes in the chin; bentrals not well differentiated excent on neck; irreghar rows of enlared scales low on tlanks.

Higure 119-Hardwicke's Sea Snake, Lapemis hardwickii. Photo by Edward H. Taylor (Preserved specimen).

Greenish or yellowish above, with series of dark crossbands that are much wider than the light areas between them; paler below; head dark with or without lighter mottling: tail barred with black tip.

The average length of adults is 25 to 30 inches with a maximum of about 35 inches.

Remarks: A very abundant snake in shallow estuaries along coasts of Viet Nam, Malaya, and the Philippines and often taken in fish nets. It is most abundant cluring the rainy season (July to November).

Despite the very small venom sield (about 2 mg . from an adult snake) several fatal bites are on record; toxicity of the renom is less than that of the beaked sea snake ($\mathrm{p}, 163$)

Pelagic Sea Snake, Pelamis platurus (Linnaens). Identification: Head elongate, flat, slightly wider than neck; body of moderate build, very strongly compressed laterally; the entire appearance is very eellike. Head shields large, symmetrical; body scales small, quadrangular; ventrals not larger than adjacent scales.

The commonest color variety is black or dark brown above, dark yellow to brown below with a pale sellow lateral stripe. Another common rariety is sellow with a straight-edged brown or black dorsal stripe. In less common forms, the dark stripe may be wavy or broken into transverse bars. The head is usually dark on top and rellow on the sides; the tail is whitish barred or motiled with black.

The average adult length is 25 to 30 inches with a maximum of 44 inches.

Fyaure 120.-P'elagic Sea Snake, Pelamis platurus. The most widespread species of sea snake; the one found along the west coast of tropical America. U. S. Navy photo.

Remarks: This is the only truly ocean-going snake; it has repeatedly been seen hundreds of miles from land and has reached many remote l'acific islands including Hawaii. It is, nonetheless, the most plentiful in the comparatively shallow waters over the continental shelves. Althongh a graceful, rapid swimmer, it seems
to spend much time floating at the surface. It is rirtually helpless on land. Great schools of these snakes have been seen in the shallow waters along the west coast of tropical America at certain seasons. This is a species that seems to be detinitely repelled by fresh or brackish water and does not enter creeks or rivers.

Onls minute amounts of venom can be obtained from this species in the laboratory, and the toxicity is about one fourth that of Enhydrina (p. 163). Only one human fatality has been ascribed to the bite of Pclamis; the report dates back almost a century and the snake may not have been correctly identified.

REFERENCES

B. DRME, Michel. 1963. Venomous Sea Snakes of Viet Nam and Their Venoms. In Venomous and Poisonous Animals and Noxious Plants of the Pacific World (H. L. Keegan and W. V. MacFarlane, eds.). Pergamon Press: Oxford, pp. 3ヶ3-378, figs. 1-5.
IIERRE, Albert. 1942. Notes on Philippine Sea-snakes. Copeia, no. 1, pp. 7-9. 1949. Notes on Philippine Sea Snakes of the Genus Laticauda. Ibid., no. 4, pp. 282-284.
SMITTH, Malcolm A. 1926. A Monograph of the Sea-snakes. 'Taylor and Francis: London, pp. i-xvii $+1-130$, figs. 1-35, pls. 1-2.
YOLSめEE, IIclqe. 1939. The Sea Snakes of the Iranian Gulf. In Danish Scientific Tnvestigations in Iran (Knud Jessen and Ragnar Sparck, eds.) Copenhagen, Part 1, pp. 9-45.

NOTES

Chapter IX

ANTIVENIN SOURCES*

Antivenins are available for use in the treatment of most cases of snake venom poisoning. They may be supplied as the whole serum taken from horses immunized against the venom(s) and packaged as a solution or as a dried product, or they may be supplied in a concentrated or purified form as either a liquid or a lyophilized powder. The ability of these various products to neutralize a specific renom may differ considerably. In general, the more species and grenus specific the antivenin the more effective it will be in combating the eflects of poisoning. Also, the more concentrated and purified the product the more effective it will be and the less the likeli-
hood to produce amaphylaxis. Before administering any antitoxin the physician or corpsman should consult the brochure accompanying the antivenin for specific instructions.

The following tabulation shows the antivenins arailable, the country in which they are produced, the producer, the name of the product, the renom(s) used in the preparation of the antivenin, the common name of the snake, comments on the additional venoms that the antivenin may neutralize, and data on the processing of the antivenin. The renom(s) used in the preparation of the antivenins appear singly (monovalent) or in groups (polyvalent).

REFERENCES

RUSSELL, F. E. and LAUURITZEN, I. 1966.
Antivenins. Trans. Royal Soc. 'Trop. Med.
Hyg., 60: 797-810.

[^14]M(iERIA

ANTIVENIN SOURCES

VENOM(S) USED IN

Monovalente Anti-Crotálico Crotalus durissus
. 11 antivenins are furitied by

 s.az!pisunau u!uat! uay aysus

rotalus durissus
(Trutu). l: Mr ur, inli
(Jararaca pintada)
(Jararaca pintada)
Crotalus durissus
terrificus (Cascaher).
buthups altermutus. (Urutu), b. neureiali
(Jararaca pintada)
cotalus durissus.
tormificus ((cascathel)
Bothrops altrmatus

(Jararaca pintatat, la.
jujeratal (Jararacal), I:

Lemansin tratilis
(Australian brown
shake)
-
Ifanthephis anterctirns
(Deatha adder)
Vaja n. sputatriax
(Malayas (\%) $\begin{aligned} & \text { Mat })\end{aligned}$
scudechis papuanus
(Papuan blacksnake)
Enhydrina schistosa
(Beaked sea snake)
Name of Product
Nerlun Intiviperin
Bivalente Mnti-motrópico
Instituto Nacional de Microbiologia, Vélez
Sarsfield 563, Buenos
COUNTRY Producer

ARGENTINA

Polivalente Misiones
Polivalente
Brown Snake Antivenin
Death Adder Antivenin
Malayan Colra Antivenin
Papuan Black Suake
Antirenin
Sea Suake Antivenin
AUSTRALIA_--------Commonwealth Serum
red-bellied blacksuake and mulga snake renoms. Recent animal experiments (Minton, unpublished data) indicate that these antivenins also have
considerable ability to neutralize venoms of cobras (Naja sliciy put (snopydolydo pat (Bumgarus). When used against renoms of heterologous u!̣əa!̣ue jo sasop ayt 'sapads should be two to four times as large as those recommended sapads snoد̃opouoy ayt doj Sea snake Intivenin mas be -nau auos asey of pałoadxo
 of sea suakes other than

All of the Commonwealth
 -sax!p ulsdad fq panturil ont tion and ammonium sulfate
 of podetเบห. a final concentration of 20% protein.

 werke AG, Marburg-Lahn,
finmany. pazxodas sị ov!p!ders-lut onos to be effective in treatment of envenomation by other species of coral snakes. Sôrn Anti-
 are reported to neutralize the benom of the bushmaster (Lachesis mutus) in large dosage.
These athtivenins are prepared

atmbonimu sulfate profifitation.

Oxyuranus scutcllutus
(Taipan)
Xotchis scutatus
(Tiger snake)
Oxyuranus scutellatus
(Taipan), Acanthophis
antarcticus (Death
adder), Notcchis scutatus
(Timer suake),
Pseudechis papuanus
(Papuan blacksnake)

Tiger Snake Antivenin
Papua-New Guinea
Polyvalent Antivenin
Sôro Anti-(crotílico

> o.)! +untury Inuy oses
sîro Anti-Blapúdien Sôro Anti-Botrópico Sôro Anti-ophídico

AISTRIA	Serotherapentisches
	Institute Wien. Triesterstrasse 50. Wien
BIRAZI	Instituto Butantan. Caixa Postal 6.). São Panlo

ANTIVENIN SOURCES (Con'r.)

Serum Intivenimenx cohra is
reported to neutralize the reported to neutralize the
renom of the Emybtian cobr (Vaja haje) as well as the A-i:n -perdes. sorena li.:i. venimeux Naja is reported to neutralize the venom of other Ifrican cobras.
Naja hajc, N. nigricollis, and
Bothrops lanceolafus monovalemt antivenine are alsin available.

jajaraca (Jararaca). 1 b. jartracussu IJarar: cussú), B. cotiara (C゚っtiatal
Sillue as Anti-Butmpian plus Crotalus durissus

Crotalus durissus

$$
\begin{array}{ll}
\text { Crotalus durissus ssp. } & \text { ('oncentrated by ammonium } \\
\text { (Cascabel), Bothrops sp. } & \text { sllate prothtathen ats) }
\end{array}
$$

Naja maja A Asiatic erhral
Vaja haje (Emgntian
mbrat, N. Migrionlis
(Nputint (obral)
Dendroaspis viridis
(Western green mamba) bungarus flavirps. Agkistrodon rhodostoma
(Malaran pit viper) (Mabayan pit viper)
Echis carinatus ehis carinatus
(Saw-scaled
(Saw-scaled viper),
Naja haje (Egyptian cobrat), N. nipricollis

Name of Product
(Cont'd)
Siro Anti-Botrópico

> Institutu I'inheiros
> Iroductus Thera-
> peuticos, Caixa
> Postal 951, São Paulo Producer
(Cont'd)

Country
(Cont'd)

A $12-13 \%$ globulin

Supplied as whole serum or

I'ipera berus (European viper), V. ammodytes (Long-nosed viper), V. aspis (Asp viper)
Echis carinatus (Sawscaled viper)
$\begin{aligned} & \text { Bitis arictans (I'uff } \\ & \text { adier), Is. galomica } \\ & \text { (Gaboon viper) } \end{aligned}$
```ferastos ecrastes (African desert horned viper). (`. vipora (Nahara sand viper)```
Vipera lebetina I Ievantine viper). V. ranthina (Near Last viper), V..x. malarstinar 1 lalestine viper)
Bitis arictans (Iuff adder). B. gubomira (Gaboon viper), Echis curimatus (siaw-sated viper). Jaja metrimallis (Spitting cobra), N. haje (Egyptian cobra)
l'ipcra aspis (Asp viper).   1. brrus (Earopu:at viper)
vipro, le. arirdans IPuff aldher), Certastes rerastes (African desert horned viger), r. ripmor (Saliara sand viper), limert lo tima' (Iavantime viper), EFhis    vigrre, Vaja nigricollis (Spittine (eflata), 8 . haje (Deyptian cobtar
fillis grabenic't lfaluron   viper). Is. ari, tans (1’uff   adder), 1 , nasicornis   ( Kiver jalk), Homur-   "hutus hurmurhatux:


Serum Antivenimeux
Echis
Serum Antivenimelux
Bitis
Serum Antirenimeux
Cerastes
Serum Antivenimenx
Inhetina-Nanthina
Sermm Antivenimenx
Bitis-Fehis-Naja
Serman Antiveniment
Aspis-Berns
Serum Nordafrika

Behringwerke Al:
皆
35: Marburg
ANTIVENIN SOURCES (Con't.)
Venom(s) USED in (Ringhals), Naja
nigricollis (Spitting
(ohra), N. haje
(Egyptian cobra)
(crastes cerastes (Afris desert horned viper), Echis carinatus (Sawammodytes ( Long-nosed viper), V. lebetina ${ }^{1}$ (Levantine viper), Naja haje (Egyptian cobra) "ipera ammodytes (Long-
nosed viper), V. lebetina nosed viper), V. lebetina
(Levantine viper) (Levantine viper)
Crotalus durissus
terrificus (Cascabel). Bothrops atrox (Barba
amarilla), B. jajaraea
amarilla), B. jajaraca
(Jararaca) Hemachatus hacmachutus (Ringhals), Naja haje
(Egyptian cobra), N. nivea (Yellow cobra), N. nigricollis (Spitting
cobra) concentrated and lymhilized. Digested with pepsin.
Concentrated and lyophilizet
Not enncentrated or Iyophilized. Available as monovalent antivenins. "sucas e poyad sonolod Comments cobral
ngarus cacruleus
Indian krait), Naja
aja (Indian cobra),
chis carinatus (Saw-
caled viper), Vipera
usselii (Russell's viper) Same as in Central
polyvalent antivenin.
polywalent antivenin.

[^15]Name of Product

Serum Europa

## Serum Mittle- und <br> Sudamerika

## Serum Kobra

Polyralent Antivenin
Polyvalent Anti-Snake
Venom Serum
ABM Antivenin Perusahaan Negara Bio Farma, (Pasteur's Institute) 9 Djalan
Pasteur, Postbox 47,
R.1.,
 Pasteur,

Producer
(Cont'd)

Country
(Cont'd)
Monovalent antivenins against
venoms of Pseudocerastes
persicus (Persian horned
viper). Vipera $r$. raddci
(Elburz Mountain viper), and
Pallas' pit viper (Agkistrodon
halus caucasicus) are produced
in limited quantity, and not
for general distribution.
All antivenins are prepared by
pepsin digestion and
ammonium sulfate pre-
cipitation. Potency period
3 years.
Whole venom plus resin-
bound neurotoxin used as antifen: supplied ats whole serum in liquid form.
Reported to be effective against venoms of all Furopean vipers. Not concentrated, supplied in lried form.
rhodostoma (Malayan
pit viper)
Baja n. oxiana (Oxus
(obra). Vipera lebetina (Levantine viper), Echis carinatus (Saw-scaled viper), Vipera persica
(referred to in this
work as Pseudoccrastes persicus, the Persian

x. raddci, the Elburz
Mountain riper),
A!kistrodon haly.s (probably A. h. cau-
casicus, Pallas' pit
viper). Vipera amm
dytes (Long-nosed

Grobably Cerastes
vipera, the Sahara sand riper), (crastes rerastes (African horned desert viper)
Naja naja (Indian
(cobra), 13 ungarus
fasciatus (IBanded
krait). lipera russelii
(IBussell's viper). Dichis
carimatus isaw-scaled
riper). Vipara lebetina
(Levantine viper)
IRogoff Wellcome Re Vibhis moloratus Intiverum Echis moloratus Vrabian
saw-s"aled viper)

(Palestine viper)
suor $)$ soznpoutux vead! 1 nosed viper), V . aspis (Asp viper), V. berus (Buropean viper) Polyvalent Antivenin
for Middle East. India,
and Pakistan
Antivenin
Polyvalent
for Iran

## IRAN__Institut d'Etat des

656, Teheran
(Hessarak-Karadj)
ISRAEL_-------------. IRogoff Wellcome IRe search Laboratories,
Beilinson Hospital.
P'O.B. 85, Petah P.O.B. 85, Yetah
Tikva
ANTIVENIN SOURCES (Con't.)

Producer   (Cont'd)	Name of Product (Cont'd)	Venom(s) Used in Preparation (Cont'd)
Institute for Medical	Mamushivenom	.19kistraton halys
science, Iniversity of Tokyo, Shiba	Antivenin	blomhoffii (Mamushi)
Shirokane-daimachi	Habu-venom	Trimeresurns flavovirid
Minato-ku, Tokyo	Antivenin	(0kinawa hahu)
Laboratory of Chemotherany and serum Therapy, Kumamoto City, Kyushu	Antivenin Habu	Trimercsurus flavoviridis   (Okinawa habu)
The 'Takeda Pharmaceutical Co., Osaka	Antivenin Mamushi	Agkistrodon halys   blomhofjii (Mamunhi)
Instituto Nacional de Higiene, Czda. M. Escobedo No. 20. Mexico 13, D. F.	Suero Anticrotilico	Crotalus durissus ssp. (Cascabel), C. basiliscus (Mexican west coast rattlesnake)
	Suero Antibotrópico	bothrops atros   (Barba amarilla)
	Suero Antiviperino	Crotalus durissus ssp. (Cascabel), C. basiliscus (Mexican west coast rattlesnake), Bothrops atrox I Barbat amarilla)
Laboratorios MXN,   S.A., Av. Coyoacan 1707, Mexico 12. D.F.	Suero Anticrotálico MYN Liofilizado	Different Mexican Crotalus
	Suero Antibothrópico MYN Liofilizado	Bothrops atrox   (Barha amarilla)
	Suero Antiviperino MYN Liofilizado	Different Mexican   Crotalus and   Bothrops atror   (Barba amarilla)
	Suero Antiofídico MYN   Polivalente (Liquido)	Mexican Crotalus and Bothrops atrox (Barba amarilla)


Name of Product
Mamushi-venom
Antivenin
Habu-venom
Antivenin
Antivenin Habu
Antivenin Mamushi
Suero Anticrotilico
Suero Antibotrópico
Suero Antiviperino
Instituto Nacional de
Escobedo No. 20 ,
Laboratorios MYN,
 D.F
C. durissus venom and
30 mg . of $B$. atrox venom. Potency period is 5 years. liquid preparation. Each ampule of 10 ml . neutralizes 15 mg . of $C$. durissus renom and 30 mg . of $B$. atrox venom. Potency period is 2 years. It also contains 1500 I.U. tetanus antitoxin.
concentrated.
All antivenins are Inersin treated, thermocoagulated, salt precipitated, and concentrated in liquid form. boomslang antivenin is not ordinarily distribnted but is available upon request. L'otency period is 3 years (or longer if stored at
Fitzimons: snake Park Laboratory, Snell Parade, Durban, no longer produces antivenins but acts as distributor for those
 Africin Institute for Medieal Researeh.

IMILIIPINE
Bureau of Research
P.O. Box 911, Manila

> Fouth Ifrican Instifute
for Merlical Re-
search, Hospital Fill,
P.O. Box 103s,
Johammehurg
Poo. Box 1034 ,
Johammenurg
Polyatent Antivenin ( Bitis. Naja, Hemachatus)

(Hill,
Cobra Antivenin
Cobra Antivenin
IBomslang Antivenin
1obyallent Antivenin
(Bisis, Naja, Hema-
chatus)

IMIIIPIINE   REICLBLIC"	Bureau of Research and Laboratories, 1P.O. Box 911, Manila
REPUBLIC OF	
SOHTH AFLRIC.	South Ifrican Institute for Medieal Research, Hospital Hill, P.O. Box 103s, Johammestherg

SOLTH AFRIC
Biti.* arítans li. gabomira
(Gaboon viper),
Naja nivca (Yellow
cobra), Hemachatus hacmuchatu* (Ring-
hals)
Hemachatus hacma-
chatus ( linghals),
Naja nivea (Yellow
cobra), Bitis arictans
(luff adder), $B$. gabonica (Gaboon
vipur), Lehis carinatus (Saw-
scaled viber)
scated viper)
Dendromspis mgusticep.s
(Eastern Lreen mamba).

Iolywatemt Antivenin
(Dendroaspis)
Iobvalent Antivenin
(Hemachatus, Naja,
Bitis, Echis) -
Naja n. philippinensis
(1hilippine (ohra)
$\stackrel{\infty}{=}$ (IBoomslang) cobra), llitis a
(1)uff adder),
mambat. $D$. puly/t pis
(IBlack mamba)
mambal, D. polylt pis
(Black mamba)
ANTIVENIN SOURCES（Con＇t．） renin is reported to neutralize Chinese habu renom and hethurrhatit pulywathat atid－ venin is reported to neutralize Agkistrodon renom to a

These are liguid atativenit．s． These are liquid
Not concentrated． Potency period is 2 sears． Supplied only to＇Taiwan addressees（1967）．
Lyuphilized whole serums with a potency period of
One ml．of these anti－ renins will neutralize 0．： mg ．of the homologous renom，except the＂Cobra＂ antirenin which will neutralize only 0.4 mg ．

$$
\begin{aligned}
& \begin{array}{l}
\text { COMMENTS } \\
\text { (Cont'd) }
\end{array}
\end{aligned}
$$


 （Many－handed krait） Gaja n．atra（Chinese
cobra）
gkistrodon acutus（Sharr－
nosed pit viper）
（Mang－banded krait），
Naja n．atra（Chinese
cobra）
rimeresurus mucrosqua－
matus（Chinese habu）．
T．stejnegcri（Chinese
green tree riper）
Bungarus fasciatus
（Banded krait）
Naja n．kaouthia （Monocellate cobra）
Trimeresurus popcorum ＇rimeresurus popcorum
（Pope＇s tree viper） Ophiophagus hannah
（King cobra）
Vipera russelii
（Russell＇s viper）


Name of Product
（Cont＇d）
CAPS Snake Bite
Antivenin
$\begin{array}{lc}\text { Country } & \text { Producer } \\ \text {（Cont＇d）} & \text {（Cont＇d）}\end{array}$

Bungarus Monovalent
Hemorrhagic Polyvalent
Antivenine Serum
＂Banded Krait＂
Antivenine Serum
＂Cobra＂
Antivenine Serum
＂Green Pit Virer＂
Antivenine Serum
＂King Cobra＂
Antivenine Serum
＂Russell＇s Viper＂
Antivenine Serum
＂Pit Viper＂

RHODESIA＿－．－．－－－－－－CAP＇S，1＇O． 130 C
Taiwan Serum \＆ Vaccine Laboratory，
151 Tong－shin Street，
Nang Kang，Taipei TAIWAN＿－－－－－－－－－－－－－－T

## （1）Kann Taipel

Naja Monovalent
Agkistrodon Monovalent
Neurotoxic Polsvalent
Antivenine Serum
＂Banded Krait＂ ＂Green Pit Virer＂
Antirenine Serum ＂King Cobra＂ ＂Russell＇s Viper＂ Antivenine Serum
＂Pit Viper＂

[^16]ェックリホリーバ
（62ス＂
UNITED STATES.-.--Wyeth Laboratories,
(obra Antivenin
(obra) apuroximations of the Russian No information is available
as to the concentration or
manner of preparation of
these antivenins.

ANTIVENIN SOURCES (Con't.)
 atamonint. - mitate.

Venom(s) Used in Preparation (Cont'd)
amarilla), Bolkrops sp. ("Tigat Maripma"
Crotalus durissus ssp. (Cascabrel)
Bothoup.s utro, 1 Marlat amarilla), Bothrops sp. ("Tierra Marim"a"). Crotalus durissus ssp. (Cascabel)
Lapemis hardurickii   (Hardwicke's sea suake)
Vipera ammodytes (Longnosed viper)

Name of Product
(Cont'd)
Suern Autibotrópien amarilla), Bolhrops sp. Crotalus durissus ssp.
amarilla), Bothrops sp
Crotalus durissus ssp.
Lapemis harducickii
ipera ammodytes (Longnosed viper)


Sea Snake Antivenin ${ }^{2}$
Serum Antiviperinum

\[

\]


1-Included when arailable
2-Production temporarily
${ }^{2}$-Production temporarily suspended until venom can again be obtained

## GLOSSARY

Anal plate: The large scute covering the vent. It marks the division between body and tail. It may be entire, or divided by an oblique suture (fig. 10).
Anaphylaxis: A severe hypersensitivity reaction which may cause circulatory, respiratory and neurological symptoms. Often fatal if untreated.
Antivenin: An antitoxic serum which neutralizes a venom.
Antivenom: Antivenin.
Apical pits: Tiny depressions, usually paired, near the terminal end of each dorsal scale when present; function unknown.
Aquatic: Living in water. (Compare terrestrial.)
Arboreal: Living in trees or bushes. (Compare terrestrial.)
Autopharmacological substances: Chemicals produced and released by body cells in response to a stimulus, such as renom. These substances may produce deleterious effects, such as shortness of breath, changes in heart rate and shock.
Canaliculated: Traversed by a small tubular passage or chamel. Here applied to the fangs of snakes.
Canthus (or canthus rostralis) : 'The angle between the flat crown of the head and the side, between snout and eye; may be sharp, obtuse, obsolete or ubsent.
Canthal scales: Enlarged scales along the lateral border of the crown between internasals and supraoculars in some vipers and pit vipers (fig. 12).
Chin shields (Genials) : Paired enlarged scales near the ventral midline of the lower jaw; anterior chin shields in contact with mental or separated from it by first infralabials; a pair of posterior chin shields may be present behind the anterior (fig. 6).
Compressed: (In reference to body shape.)

Flattened from side to side, giving a greater height than breadth.
Constriction Band: A wide piece of rubber or other material used to depress flow along superficial lymiphatic and venous channels.
Crotalid(s): Refers to snakes of the family Crotalidae or pit vipers which includes the rattlesnakes and lance-heads.
Crown: The top of the head, or the anterior part of the top; usually occupied by 9 enlarged scutes, from the rostral (on the snout) to the parietals (fig. 6).
('yanosis: Bluish discoloration of the skin caused by insulficient oxygenation of the blood.
Depressed: (In referenco to body shape.) Flattened from top to bottom (dorsoventrally), giving a greater breadth than height.
Distal: Farther away from the body. (Compare proximal.)
Diurnal: Active during tho daylight hours (see nocturnal).
Dorsals: The rows of small scales that cover the top (dorsal) surface of a snake's body. They are counted in a diagonal (or zigzag) line from the edge of the ventral plate, across the back to the opposite edge (fig. 7).
Eechymosis: I discoloration of the skin resembling a bruise. It is caused by the extravasation of blood.
Edema: The presence of excessive fluid in the intercellular tissue spaces.
Elapid(s): Refers to the snakes of the family Elapidae which includes the cobras, kraits, coral snakes, and mambas.
Envenomation: The deposition of renom within tissues.
Extravasation: Passing of a body fluid out of its proper place, as blood into surrounding tissues after rupture of a ressel.
Eye (Sizes): An eye of moderate size has a diameter that is about equal to the eye's
distance from the lip; at large eyes diameter is about one and one-falf this distance: a small eye is about one-half this distance.
Fomess: Enkared hollow or grooved teeth specialized for injection of renom (iig. 1).
Fiasciotomy: An incision cutting the fascin or dense comnective tissue that surrounds musfles. Sometimes nsed in treatment of smakebite to release pressure from severe swelling. Firontal: The single enlarged median scute on the crown between the supraoculars and behind the prefrontals (fig. 6).
Gulars: The rows of small nonspecialized scales on the ventral surface of the lower jaw anterior to the ventral plates (fig. 6).
Hemoglobinuria: The presence of hemoglobin in the urine.
Hemotoxin: I toxin capable of destroying blood cells. Often also applied to toxins that cause hemorrhage.
Herpetology: The scientific study of reptiles and amphibians.
Mypotension: Abnormally low blood pressure.
Imbricate: Overlapping, as the tiles on a roof; the usual condition for dorsal and ventral seales. (Compare juxtaposed.)
Infralabials: The (usually enlarged) scales along the border of the lower lip behind the mental (fig. 6).
Internasal (s): The (usually paired) scutes on the crown just behind the rostral (fig. 6).
Intraperitoneal: Within the peritoneum, or peritoneal cavity, as intraperitoneal injection of drugs.
Juxtaposed: With edges adjacent but not overlapping; the usual condition for head shields. (Compare imbricate.)
$\mathrm{LD}_{50}$ : The amount of a drug or poison necessary to kill 50 percent of the animals in a test group; usually stated in mg . per kg . on a dry basis.
Loreal: The scale on the side of the head lying between the (post-) nasal and the preocu$\operatorname{lar}(\mathrm{s})$; characteristically absent in elapid snakes (fig. 6).
Lyophilization: Process of quick freezing and dehydration under a high vacuum.
Mental: The triangular scale at the symphysis of the lower jaw, corresponding in position to the rostral of the upper jaw (fig. 6).

Myoglobinuria: Presence of atype of muscle protein in tho wrine.
Nasal: The scate enclosing the nostril; may bo single, pertially divided (by a suture extending down from the nostril), or completely divided (giving a pre- and postmasal) by a vertical suture that extends through the nostrit (fig. 6).
Nasal valve: A sphincter device for closing the nostrils; found in somo vipers and nearly all sea smakes.
Nasorostral (scale) : An enlarged scale (usually paired) that lies just behind the rostral scale (e.g., between the rostral and the nasal) in some vipers.
Necrosis: Death of a circumscribed portion of tissue.
Necrotizing: Capable of causing necrosis.
Neuromuscular transmission: The relay of a stimulus from the end of a nerve to its muscle.
Neurotoxin: A poison that has a more marked effect on nerve tissue than other body tissues. Often improperly used to denote that the poison affects only the nervous system.
Neutralize: The ability of a substance (antivenin) to nullify the effects of another substance (venom).
Nocturnal: Active during the night. (Compare diurnal).
Occipitals: Paired enlarged scutes that lie immediately behind the parietals in a few snakes, e.g. king cobra (fig. 81).
Paresis: A slight or incomplete paralysis, sometimes noted as a weakness of a muscle.
Paresthesia: An abnormal sensation, as pricking, numbness or burning.
Parietals: The large paired scutes at the rear end of the crown, immediately behind the frontal and supraoculars (fig. 6).
Petechiae: Small spots formed by the effusion of blood.
Pit (or Loreal Pit): The deep depressions on the side of the head in the loreal region in pit vipers (family Crotalidae); they are heat-sensitive and aid the snake in finding its prey in the dark (fig. 4).
Plate: A large flat scale, usually on the head or ventral surface.
Polyvalent: Used in this text to denote a serum
containing antitoxins against the venoms of a number of clifferent snakes.
Postoculars: The scale(s) immediately behind and in contact with the eye. Usually between the supralabials and the supraoculars (fig. 6).
Prefrontal(s): The (usually paired) enlarged scutes just behind the internasals, or that area if it is covered with small scales (fig. 6).

Prehensile (in reference to tail): Adapted for grasping by wrapping around; usually visible as a curled and compressed tail tip. Typical of tree snakes.
Preoculars: The scale(s) lying immediately in front of and in contact with the eye (fig. 6).
Proteolytic: Capable of causing the digestion or dissolution of proteins.
Proximal: Nearest to the main part of the body or the median line of the body. (Compare distal.)
Ptosis: A drooping of the upper eyelid.
Pupil (of eye): The black opening enclosed by the iris; may be round, horizontally elliptical, or vertically elliptical.
Rostral: The single enlarged plate at the tip of the snout (fig. 6).
Savannah: Open grassy country interspersed with small groups of trees or bushes.
Scutes: Overlapping or juxtaposed scales that cover the surface of the body. Formed of horny skin in reptiles, differing from the bony scales of fishes.
Shield: An enlarged scale or scute, commonly specialized and with a distinctive name.
Shock position: Victim lying on his back with head and chest slightly lower than his feet.
Snakebite: $\Lambda$ bite inflicted by either a venomous or nonvenomous snake.
Snake venom poisoning: A condition resulting from the injection of snake renom.
Subcaudals: The scales or scutes under the tail: they may extend across the entire ventral surface (single), or go only half way across, where they are met by another scale (paired) (fig. 10).
Suboculars: The scale(s) immediately below and in contact with the eye; between the eye and the supralabials (fig. 6).

Subterranean: Living under the surface of the ground. (Compare terrestrial.)
Supra-anal tubercles: Small raised keel-like structures on the dorsal scales above the rent in some snakes.
Supralabials: The scales (usually enlarged) or scutes along the border of the upper lip behind the rostral (fig. 6).
Supraoculars: The enlarged scales or scutes (sometimes divided) on the crown directly above each eye (fig. 6).
Suture: A line of division between two scales.
Swelling: An enlarged area.
Temporals: Scales or scutes on the side of the head between the parietals and the supralabials, and behind the postoculars; anterior temporal(s) are in contact with the postoculars; posterior (sometimes secondary and tertiary) temporals aro in vertical rows, not in contact with postoculars (fig. 6).
Terrestrial: Living on land or on the ground. (See aquatic, arboreal, subterranean.)
Toxin: A naturally occurring poisonous substance. A synonym for renom or poison.
Trismus: Tetanic spasm of jaw muscles; lockjaw.
Urticaria: A skin eruption, usually associated with allergy, characterized by sudden appearance of smooth, slightly clevated patches usually paler than the surrounding skin and accompanied by itching. Commonly called hives or nettle rash.
Vasopressor: A drug that raises blood pressure by stimulating the contracting muscles of the capillaries and arterioles.
Veldt: The open grassy regions of the African highlands.
Venom apparatus: The structural components that produce, transport and deliver the renom. In snakes, it is usually composed of two renom glands, two venom ducts, and two or more teeth or fangs.
Vent: The common posterior opening of the urinary, gastrointestinal, and reproductive systems of reptiles; marks the beginning of the tail in snakes.
Tentrals: The enlarged scales (scutes or plates) that extend down the undersurface of the body (fig. 9).
Vesiculation: The formation of blisters.

## GENERAL REFERENCES

130(ildicl. (. M. 19)\&, Dentitional Phenomena in C'obras and Other Elapids with Notes on dolaptive Modifications of Fangs. Bull. Amer. Mus. Nat. Hist., vol 81 (art 3), pp. 2S5-360, figs. 1-73, pls. 48-51, maps 1-1.
BOULENGER, G. A. 1896. Catalogue of the Snakes in the British Museum (Natural History). Vol III. 'Taylor and Francis, London, xiv $+727 \mathrm{pp} ., 37$ figs., 25 pls.
BRATTSTROM, B. II. 196t. Evolution of the Pit Vipers. 'Trans. San Diego Soc. Nat. Hist, vol 13, pp. 185-268, figs. 1-41.
BUCKLEY, E. E. and PORGES, N. (editors) 1956. Venoms. Pub. Amer. Assoc. Advancement Sci. No. 44 , xii +467 pp ., text figs.
COCHRAN, D. M. 194\%. Poisonous Reptiles of the World: a Wartime Handbook. Smithsonian Inst. War Background Studies No. $10, \mathrm{v}+37 \mathrm{pp} ., 2$ figs., 17 pls. ( 1 color).
DITMARS, R. L. 1931. Snakes of the World. Macmillan, New York, $.07 \mathrm{pp}, 8 t$ pls. (Reprinted in paperback, 1962, Pyramid, New York).
GLOYD, H. K. and CONANT, R. 1943. A Synopsis of the American Forms of Agkistrodon (Copperheads and Moccasins). Bull. Chicago Acad. Sci., vol 7, pp. 147-170, figs. 1-16, maps 1-2.
KAISER, E. and MICHL, M. 1958. Die Biochemie der Tierischen Gifte. F. Deuticke, Wien, 258 pp .
KEEGAN, H. L. and MACFARLANE, W. V. (editors) 1963. Venomous and Poisonous Animals and Noxious Plants of the Pacific Region. Pergamon Press, Oxford, 456 pp ., text figs.
KLAUBER, L. M. 1956. Rattlesnakes: Their Habits, Life Histories and Influence on Mankind. Univ. California Press, Berkeley, 2 vols., 1476 pp ., 187 figs. (2 color).

KLEMMLER, K. 196\%, Liste der Rezenten Giftschlangen: Elapidae, Hydrophidae, Viperidao und Crotalidae. In, Die Giftschlangen der Erde. N. G. Elwert, Marburn/Lahn, pp. $251-164$, pls. 1-:37 (color), map 1.
LUDICKI: M. 1962, 196t. Serpentes. In, I Fandbuch der Zoologie. Walter de Gruyter and Co., Berlin, vol 7, part 1, fasc. 5 and 6, 298 pp , illus.
MAKI, M. 1931. A Monograph on Snakes of Japan. Dai-ichi Shobo (publisher), Tokyo, Japan. 240 pp .
MARX, H. and RABB, G. B. 1965. Relationships and Zoogeography of the Viperine Snakes (Family Viperidae). Fieldiana Zool., vol 44, pp. 161-206, figs. 32-46.
MASLIN, 'T. P'. 1942. Evidence for the Separation of the Crotalid Genera Trimeresumus and Bothrops with a Key to the Genus Trimeresumis. Copeia, No. 1, pp. 18-24, figs. 1-2.
MERTENS, R. 1960. The World of Amphibians and Reptiles. (English translation by H. W. Parker). George G. Harrap and Co., London, 207 pp., 80 pls. ( 16 color).
NATIONAL ACADEMY OF SCIENCES, NA'IIONAL RESEARCH COUNCIL, COMMITTEE ON SNAKEBITE THERAPY 1963. Interim Statement on Snakebite Therapy. Toxicon, vol 1, pp. 81-87.
OLIVER, J. A. 1959. Snakes in Fact and Fiction. Macmillan, New York, xiii + 199 pp., illus.
PARKER, IH. W. 1963. Snakes. W. W. Norton Co., New York, 191 pp., illus.
PHISALIX, M. 1922. Animaux Venimeux et Venins. Masson, Paris, vol II, xii + 864 pp., 521 figs., 17 pls. ( 8 color).
POPE, C. H. 1955. The Reptile World. Alfred A. Knopf, New York, xxv +324 pp., 221 figs.
RUSSELLL, F. E. and SCHARFFENBERG,
R. S. 1964. Bibliography of Snake Venoms and Venomous Snakes. Bibliographic Assoc., West Covina, California, 220 pp . SCHMIDT, K. P. and INGER, R. F. 1957.

Living Reptiles of the World. Hanover

House, Garden City, New York, $25 \%$ pp., text figs., 145 color pls.
SWMROOP, S. and GRIB, B. 1954. Snakebite Mortality in the World. Bull. World Health Org., vol $10, \mathrm{pp} .35-76$.

## INDEX

This index has been prepared to help the layman seeking information about poisonous smakes. The tedmical names of all the poisonons snakes are listed alphabetically with the species name first and the genus name following it. The most widely used common names of the snakes are also listed alphathetically, followed by the techncal names in their customary order (genns name lirst). Since common names are sometimes misleading, identification based on common names is not recommended, and all information about the snakes will be found under the techmical names only. The index also contains the major subjects treated in the text and the key words most helpful to the reader secking specific information. Maps and geographical distribution tables are also cross-indexed here.

Common names in foreign lamguages have not been listed according to the mules of alphabetizing in those languages, but have been treated as if they were English words in order to make it easier for the English-speaking layman to find the information he needs quickly.

```
tcrelyplophis
 158, 16:
```



```
achil (See Naja nigricollis.)
achipeten (See Waltcrinncsia acgyptia.)
.l'rochordus. --1.0
ucutirostris. Dcmansiat _ _-.-.-.-.-.-.-.-.-.-.-.-.-. 140
acutus, Aykistionton 3&, 5.3, 112, 116, 128, 132, 135, 136,169
```




```
 vipers.)
adder:
 Armenian mommain (See V'ipera xanthina.)
 Atlas (See Vipera lebctina.)
 Malkan (ross (See lipera berus.)
 Berg (see bitis atropos.)
 Bibron's burrowing (See Atractaspis bibronii.)
 burrowing (See Atractaspis bibronii.)
 buttertly (See litis gabonica.)
 ("ape night (See Causus rhombeatus.)
 (ape puff (see Bitis inomata.)
 (Calleasus (See TVipera laznakovi.)
 (entralian death (See Aconthophis pyrrhus.)
 common death (See Acanthophis antarcticus.)
 common European (See Vipera berus.)
 common night (See Causus rhombeatus.)
 Congo burrowing (See Atructaspis congica.)
 cross (See V'ipera berus.)
 deaf (See Acanthophis antarcticus.)
 death (See Acanthophis antarcticus.)
 demon night (See Causus rhombeatus.)
```

```
desert (See Vipera lebetina.)
desert death (See Acanthophis pyrrhus.)
Eastern sand (See Vipera ammodytes.)
European (See Vipera berus.)
green night (See Causus resimus.)
horned (See Bitis caldulis; Bitis cormuta.)
horned puff (See bitis eandalis: Bitis nasicomis.)
lberian cross (See l'ipcra berus.)
Karst (See Vipera ursinii.)
Levantine (See I'ipera lebetina.)
Lichtenstein night (See Causus lichtenstemii.)
lined night (See Causus lincatus.)
meadow (See V'ipera ursinii.)
mountain (See Bitis atropos; V'ipera lebetina.)
New Guinea death (See Acanthophis antarcticus.)
nisht (See ('amsus defilippii; ('amsus resimus:
 Uausus rhombeatus.)
Peringuey's (See Bitis peringueyi.)
puff (See l;itis arictans.)
rhombic night (See Causus rhombeatus.)
Sahara (See V'ipera lebetina.)
snouted night (See Causus defilippii.)
smub-nosed (See Vipera lutasti.)
Steppe (See l'ipera ursinii.)
velvety green night (See Causus resimus.)
western sand (See V'ipera ammodytes.)
A(i`n_-_-_--10.-13
```



```
ac!yptia, W`a7terimmesia__-_-_-_-_-_-_-_-_9, 81, 106, 108
afee (Scee Echis carinatus.)
```

Afghanistan ..... $10 .-13$
Africa, Central $-6,18,85-103,108,126$
Africa, North $6,18,74,75,77-84,108,126,134$
Africa, South $6,18,80,82,8.5-103$1! kiistrodon_-_-_-_-_38, .11, 53, 72-3, 75, 107, 112, 128
Agkistrodon in Asia $6-8,75,118,128,134,169$
Aglistroton in Central and North
America ..... 7, 8, 37, 38, 51, 53, 75, 169
aguason (See Naja naja.)
aipomiro (See Bitis arictans.)
Aipysurus sp ..... $1.58 .161,164$
akipom (See Bitis arictans.)
Albania ..... - $1-6$
abicinctus. Miernrus. ..... (;)
albocarinatus, Bothrops ..... 60
albolabris. Trimeresurus ..... 118. 129. 182
Algeria ..... $74-84,169$
alleni, Micrurus. ..... 48
alnawana (See Ritis arictans.)
Alsophis ..... 11
alternatus. Bothrops. ..... (i0, 65, 16:9
alticola, Bothrops ..... (i)
alupong (See Naja naja.)
amac-asa-hebi (See Bungarus multucinctus.)
America. Central 6. 7, 47-58, 6א, 112, 13:
America, North_-6, 8, 18, 35-45, 49. 75, 112, 135, 136, 169

ammodytcs. V'ipera ..... 72, 75, 106, 111, 169)
ammodytoides, Bothrops ..... (61
anal plate ..... 2ら. 141
anaphylaxis ..... 181
ancoralis, Wicrurus. ..... 48. 60
Andaman Is ..... 115-30
Andaman Sea ..... 157.7
andianus, Bothrop.s. ..... til
Angola ..... -. $110: i$
angusticeps, Dentroaspis ..... 6, $86,92,169$
amиantalci, Kolphophis ..... $16 \%$
annellatus, Micrurus ..... 60. $1: 3$
ammulata, Bonlengerina_ ..... A(i, ! 2
anmulata, Vermicclla ..... 148
annulatus, Emynocephalus. ..... 1.5
anomalus, Thalassophis ..... 160
antarctirus, Acanthophis ..... 140, 146, 169
antivenin administration. ..... -5-16. 21-"
antivenin expiration date ..... 21
antivenin sensitivity test. ..... $16-7$
antivenin sources ..... 169
antivenom (See antivenin.) apical pits ..... 181
Apistocalamus. ..... 146
approximans, Rhymchoclaps ..... 143
apracfrontalis, Aipysurus ..... 158
aquatic ..... 181
Arabian Sea ..... $157-66$
Arafura Sea ..... 155-67
arboreal ..... 181
Argentina a_ $38,52,59-69,169$
avictans, Bitis. 6, $9,78,82,87-8,101,106,109,169$
Aru ..... 140-5.
Aruba Is. ..... กิ) $8: 1$

Asia $82,95.112$
 asigirikolougo (See Bitis aristans; Naja haje.)
asp (See Cerastes ripera.)
asp. Cleopatra's (See Cerastes vipera.)
asp, European (See Vipera aspis.)

back-fanged shake (See Dixpholidus t!mus.) balawona (See .ltractaspis mirrolepidota.) balewol (see Ahithetaspis microlepilota.) halor (See Naja uaja.)
balaัทi, Mirrurus,
bambo snake (See Trimersurus gramincus; Trimeresurus stejncgeri: Trimeresurus wagleri.)

handed suake (Siee Mieropechis clapoides.)
binded snake:
desert (See Mhymehoclaps bertholdi.)
Jan's (see Rhmuchoclaps bertholdi.)
Stephen's (see Hoplocephalus stophensii.)
hamde-hands (see bhemehochaps bertholdi; Vermicella (munulata.)
hande-handy, nothern (See hhmelioclaps bertholdi.) harha amarilla (See leothrople atrox.)
barbowri. Adenorhinns S6. 98

hardick (see brachuaspis curfa.)
barsil (see Walterimesia acguptia.)
Barnard snake (See (illuphodon barnardi.)
barnardi. Glimphodom.

bartezcooremil (see Acanthophis antarcticus.)

56. 169


battersbyi. .tractaspis ............. 4s

bead snake (See Mirmurs fultins.)
beddomei. Callinphis_
11i
belalang (See Ophiophagus hannah.)



 ..... is
berothuldi, lihpmelowelopse ..... $11:$
berove. lipertu



13111tan!. ..... $11.0-30$
bilmondi, ('ullionhlix. ..... 111i, 12:2. 1:3:
Dibromii, I Practuxpis ..... S, 99
bicolor. liothrops. ..... 4
hirohlur, lihimopllurephlalus ..... 143, 153
bilinctelus. . ! !kisisfoulon ..... (i) 14, in
bilincolus. l:nfhrops. ..... (i1, 65
bimuewlatu, fermicellu. ..... $14:$
birel shake (Sese Tholutornis kirtlandii.)birit thu (seee Trimeresurus sumatranus.)
$1111 \therefore$
bite ( Nee fangs, mortality from bites, symptoms,
treatment. Venom.)
biting mechanism ..... $-4$
bilis 7), 82, 86, 83, 100-3, 107. ..... 109. 169
bitorquatus, Hoplocephalus. ..... 142
bituberculatus, Hydrophis- ..... 1.5
bivirgata, Maticma. ..... $116,1230,1: 31$
hark-hellied snake (See Denisonia pallidiceps: Denisoniasignatu.)black-heated suake (Sere Denisonia gomblii.)
black-naped suake (See Denisonia gouldii; Vermicellabimaculata.)
black-striped snake (See Denisonia nigrostriata; Ver-micella calonota.)
Wacksnake (See Dispholidus tuphs of Jfrica:
Psentechis porphyriacus of Australia.)
hacksnake:
desert (See W'altcrinnesia acguptia.)
Egyptian (See Walterinnesia acgyptia.)1'ipuan (See Pseudcchis papuanus.)redthellied (See Pscudechis porphyriacus.)spotted (See Pseudechis colletti.)
homhoffii, A!kistrodon halys. ..... 136
bocaraca (See bothrops sehtegelii.)
bocourti, Micrurus. ..... 60
boettgeri, Calliophis ..... 132
boichunga (See C'rotalus durissus.) boipera (See Bothrops itapetiningae.) Bolivia ..... 
boma (See Isitis arietans.)
boomslang (See Disphotidus typus.)
Borneo ..... 11.7-30
borquira (See ('rotulus durissus.)
boschmata, Incnisomia ..... 42
bosré (See Elapsoidea sunderallii.)
Bothrops ..... $6-8,49,51,54,65,129,169$
Botswana ..... 8.7-103
boulengeri, Atractespis. ..... 88
Boulengerina_ ..... 80, 91
Brachuaspis ..... 14. 147
Brachyurophis. ..... $139,143,145,147$
braza de piedra (see Bothrops nummifer.) Brazil ..... 59-69. 169
hrevicentulus. Ifkivprofon hulns. ..... 138
brdeonsehlaty (sero S'aju naja.)Iseblish (imbata54- $6: 3$
Brithsh Honduras ..... 17-5
British Isles (excepht Iredand) ..... 11-4;

brooberi, Itudrophis ..... 1.5. 16 fi
brown suake (See Demansig textilis of Ausiralla;
flispholidus tupus of Africa.)
brown-handed smake (Sem Votechis scutatus.)
brown-headed shake (sere (ilfuhodon tristis.)48
brownsuake.
collared (Sere Demmsia textilis.)(common (see Demansia textilis.)giant (see Orpuranus scutellatus.)king (See Psoudcchis anstralis.)little (See Vhaponmathus minor:)Bort Darwin (See Psemdechis australis.)spotted (See Dcmunsia textilis.)
bruinkapel (Ser Saja nivea.)
$1+2$
brunnct, Denisonia
bukizi (See Demdroaspis jomesomi.)bulabundoo (See Bitis arictons.)Ibnlgaria71-6
bululu (See lsitis arictans.)bungaroides, Bungarms
$\qquad$$116,120,133$
bumgaroiles, Ioplocephalus ..... 142,149
קиндания ..... 6. $10,11,117,119,120,133,134,169$
Burma ..... $115-30,133$burek (See Icanthophis antarcticus.)
burrowing snake, Roper (See Irachyurophis roperi.)
Burundí ..... 8.)-103
bushmaster (Nee Lachesis mutus.)
caerulescens. Iydrophis. ..... 158,166
cacruleus, Bungarus ..... $6,116,120,169$
caicaca (See Buthrops atrox.)
(alabucab) (see IInlrophis ormatus.)calligaster, Calliophis$1: 2$
('alliophis ..... 119. 121. 133, 13 f
Callophis (See Calliophis.)
ralonota. Vermicella143
camamala (See Neja naja.)
C'amberdia ..... 11.5-30
Cameroon ..... 8.)-103
campbclli, Brach!luroph is ..... 140
Canada ..... 39. … 68
canalientated. ..... -181
candidus, Bungarus. ..... 116,120
(anesnake, brown (See Oxyuranиs scutollatus.) canthal scales ..... 181
canthus. ..... 181
(antil (See Agkistrodon bilineutus.)
cantori. Trimeresurus ..... 118
cantoris, Microcephalophis ..... 160
Cape snake (See Dispholidus typus.)
caraganus, Agkistrodon halus. ..... 76
cardiotoxin ..... 118
raribbaeus. Bothrops. ..... 61, 65
carinatus, Hehis
$6,9,78,83-4,88,103,106,110,116,126,169$



(ascabel (see Cmotalus durissus; Lachesis mutus.)
cascabela (See Crotalus durissus.)
(ascabela muda (See Lachesis mutus.)
cascavel (Siee Crotalus durissus; Luchesis mutus.)


catenatus, Nistrurns_-_-_-_-_-_-_-_-_36, 43, 44, 50, 57

Cerlros Is.
Is._
$79,82,87,89,102$
Ctияия





Cerastes_-.--------_-_-_79, 82, 84, 89, 107, 109, 110, 169)
cerastes. Cerastes_-_-_-_-_78, 82, 106, 109, 110, 16:)
cerastes, Crotalus__-_-_-_-_-_-_-_-_-_-_, 36, 45, 50, 86
ceratophorus, Atheris si



(hain snake (Ssee Vipera russclii.)
chandra bora (See Vipera russelii.)
chaseni, Trimeresurus
11.
(chatilla (See Bothrops 7ansborgii.)
(hikorviri (See Bitis arictans.)
Chile -7! - (6:



chinigani (See Causus.)
chipuknpaku (See Jitis caudalis.)
chi-tsun-tsze (See Agkistrodon halus.)
chitti ( See Bum!arus cacrulcus.)
chittul (See IIydrophis ryanocinctus.)
chiva (Sfee litis arictans.)
chlorocchis, Athez̈is 88, 99)
choichodo (See Bitis arictans: Causus rhombeatus.)
christicanus, Aspidomorphus_----~------------------140

chummar (See Naja naja.)




cobra:
African black (See Naja melomolewco.)
Anchita's (See Naja anchictae.)
banded (See Naja hajc.)
banded water (See Boulongerina annulata.)
hack (See Naja haje; Naja melanolenca; Pscudohaje goldii.)
black and white-lipped (See Naja melanolevca.)
black-collared (See Naja nigricollis.)
black forest (See Pseudohaje goldii.)
black-lipped (See Naja melanolcuca.)
black-necked (See Naja nigricollis.)
black-necked spitting (See V̌aja nigricollis.)
Borneo (See Naja naja.)
brown (See Maja haje.)
burrowing (See Paranaja multifasciata.)
Cape (See N゙aja nirca.)
Central Asiatic (See Naje naja.)
Chinese (See Naja naja atra.)
coral (see Micrurus cmrallinus: Micrurus frontalis.)
de Capello (See Naja naja.)
desert (see Wralterimnesia acgyptia.)
Egyptian (See Naja haje.)
forest (See Naja melanolcuca.)
Gold's (See Pseutohaje goldii: Pscudohaje nigra.)
Gold's tree (See P'sculohaje goldii.)
Giinther's (see Elapsoidea sumderallii.)
hoodless (see Walterinnesia acomptia.)
Indian (see Xaja naja.)
king (See Ophiophagus hamah.)
Malay (See Jifu maja.)
monocellate (see Naja naja.)
monocled (See Naja maja.)
Morgan's (See Walterinucsia acguptia.)
oxus (See Vaja Maja.)
I'akistanian (See Jaja maja.)
ring-necked spilfing (See If machatus hacmacha(14.)
rock (SSe Jiaja haje.)
South Jfrican spitting (see Ifemachatus hacmachaf14.s.)
spitting (See Ircmachatus: Siaja: Xaja naja sputaPris: Naja nị!rollis.)
Storm's water (see Roulengcrina ammlata.)
swartnek (See Naja nigricyllis.)
tree (See Dendroaspis.)
water (See Boulengrrina.)
coflin smake (See lipera lebetina.)
colgadora (See bothrops schleyclii.)
(ollared smake, Australian (See Gluphodon.)
collared snake, double- (See Hoplocephalus bitorquatus.)


(0)lombia.
-5. $3!1-69.16: 9$
moloratus. Echis $\qquad$ 78, 83. 103, 106, 110, 126, 169
Colubridae 11, 31, 8:-7, : $10-1$



Congo 8.)-103

Congo, Democratic Republic of 85-103
constriction band_
$14,17,181$

convictus, Trimercsurus_------------------------------18
copper snake (See Pseudechis australis.)
copperhead (See Agkistrodon contortrix.)
copperhead:
American (See Agkistrodon contortrix.)
Australian (See Denisonia superba.)
Northern (See Agkistrodon contortrix mokeson.)
 (fr.)
Solotmens (Sive lornisanios pur.)


coral. garsathtlar (sier Micrurus mipurlitus.)

(oural seat
$1.17-6 i 7$
(w) alal snakt.
Werlean (sen Anpidelaps lubricus.)
Amazon stemter (see Leptomicrurus narduccii.)
Amazonlan (Nee Mierurus spixii.)
Amertath iser Leptomicrurus; Micrurobles; Microrine. 1
nmmellated (spe Vicrorus annflatus.)
Arizona (see Mirruroides emryxanthus.)
Nian (see ('alliophis juponicus; ('alliophis sateri.)
dust ralian (see líuchyurnhhis australis.)
bambed (seee l'alliophis mucclellondii.)
bambed Malaysian (See Maticora intestinalis.)
beantiful (See Calliophis calligaster.)
black-banded (see Mierurus nigrocinctus.)
back-ringed (see Micrurus mipartitus.)
Hhe Malaysian (See Maticora bivirgata.)
broad-banded (See Mierurus distans.)
Fitainger's (see Micurus fitzingeri.)
giant (Sere Micourus spixii.)
exaceful (see Calliophis aracilis.)
Hemprich's (See Micrurus hemprichii.)
Jinns Mexican (see Wicrurus afinis.)
longr-manded (See Matioora.)
Kellogers (see ('allimphis kellom!i.)
Macrelelland's (See Calliophis macelellandii.)
Me'Clung (See Calliophis calligaster.)
oriental (See Culliophis; Hemibungarus; Maticora.) I'acific (See Micropechis.)
Rio des Janiero (see Micrurus cornllinus.)
slender (See Calliophis melanurus; Leptomicrurus.)
small-spotted (See Calliophis maculiceps.)
Souman (See Micruroides euryranthus.)
sonthern (see Micrurus frontalis.)
spotterl (See Calliophis gracilis.)
striped (See Calliophis japonicus.)
Surinam (See Mirrurus surimamensis.)
Taiwan (See Calliophis macclellandii.)
tropical (See Micrurus frontalis.)
corallinus. Mirrwrus - -------------------------60



coronated smake (See Denisonia coronata.)




cotiarinha (See Bothrops itapetiningae.)
cottonmonth (See Agkistrodon piscirorus.)
cracheur (See Vaja nigricollis.)

('rotalidae_-26, 31, 38, 51, 53-7, 60-1, 65,-9, 72, 75, 106,
121 128-9, 135-7. 169
crotnlifs ..... 14. 181
frotulus (4)-4, 1N, :37, 39, 14, 51, 55, 57, 61-2, ..... 67, 169
crowni. ..... 27. 181reowned smake (See Denisontit coronata.)remwned suake:dware (See Aspidomorphus krefftii.)以olden (See Aspidomorphus squamalosus.)white (See Aspillomorphus harricttae.)
enatro narices (See Bothrops atrox: Bothrops castel-naudi.)
('uba-- ..... (ie'
cure (See treatment.)
curta, Brachuespis ..... 110). 116
rurtus. Lapomis ..... 1100
cyanocinctus. IIndrophis ..... 158, 16.5
cyanosis ..... 181
 ..... 11 ;
dab kwingr (See Noja nigricollis.)
daboia (See V'ipere russclii.)dagar (see Bitis arictans.)Dahomes4.7 10\%
dahomeyensis, Atractaspis ..... 88
damelii, Denisomia ..... 142
darpa (See Pseudechis australis.)
darwiniensis, Hydrelaps. ..... 1.5
Dasypeltis ..... $83,110,143$
decoratus. Mierurus. ..... 60
defilippii, Causus ..... 88
Demansia ..... $140,145,147,169$
Dendroaspis. ..... (6, $10-11,87,89,90,92,169$
dendrophila, Boiga ..... 11
Denisonia ..... $142,144-5,148$
depressed ..... 181
desert snake (See Brachyaspis curta.)desert snake, little (See Elapognathus minor.)dovisi, Denisonia142
diadem snake (See Aspidomorphus diadema.) diadema. Aspidomorphus. ..... 140
diamond snake (See Denisonia superba.) diastema. Mierwrus ..... 48. 53
diriora (See Oxyuranus scutcllatus.)disi (See Naja nigricollis.)dissoleuсия, Micrurus.1 18, 60
distal ..... 181
distans, Micrurus ..... 48, 53
distribution charts of poisonous snakes__ $36,48,60,72$,
$78,86,88,106,116,118,132,140,142-3,158,160$djalimoo (See Trimeresurus uagleri.)
İatin (See Trimcresirus yaoleri.) Djampea Is. ..... 11.)-30
dorsalis, Elaps ..... 86
dorsals ..... 28, 181
double-collared snake (See Hoplocephalus bitorquatus.)dreieckskopfe (See Agkistrodon.)duboisii, Aipysurus.158
dudbe (See Acanthophis antarcticus.)duerdeni, Atractaspis86
dugite (See Demansia textilis.)
dukaitch (See Pseudcchis porphyriacus.)dumerilii, Micrurus60
dundugu (See Naja nigricollis.)
dunensis, Tropidechis ..... $1+3$
dunmalli, Glyphodon ..... 142
dunni, Bothrops ..... 48
dunu karawala (See Bungarus ceylonicus.)
durissus. Crotalus_6-7, 39, 49, 50, ээ, 61-2, 66, 68, 69,169
dwarf snake, Krefft's (See Aspidomorphus krefftii.)
East China ..... 1:31-8
East China Sea ..... 1.7-4i7
ecchymosis 7-8, 11, 181
echide carence (See Echis carimatus.)
Echis__ 11, 79, 83, 84, 87, 89, 103, 107, 110, 119, 126, 169)
Ernador ..... $\therefore \therefore-4, \quad-!!-4!9$
edema ..... - -! ! 141
EIITA ..... 23
efa (See Echis carinatus.)
effects of suake venom ..... 3
ef'eh (See W'chis coloratus.)
ehé (See Thelotornis Rirtlandii.)
Fexph (See I'nited Arab Republic)
El Salvador ..... 45
Elapidae_-27, 31, 38, 51-3, 60, 633-5, $88,80-1,86-7,91-$
8, 106, 108, 117-25, 133-5, 140-5.5, 169
elapid snakes, amonut of venom ejected ..... (6. 3 s
elapid snakes, bites ..... 10-12, 18, 36
elapid snakes, fanss ..... - 7,26 (5, 7,141
elapoides. Mieropechis. ..... $142,14 \mathrm{~K}, 1.14$
Elapognathus. ..... $139,142,145,149$
Elaps. ..... si, s!), !1
Elapsoidca ..... 7!), 80, s9, 94
cleyans. Hydrophis ..... 158
elegens, Micrurus. ..... $-4$
clegans, Trimeresurus ..... $-132.137$

embalasasa (Sere (eansus. rhombeatus.)

engoddensis. Atractaspis ..... 78, 81, 99, 106, 108-9
engdahli, Atroctaspis-
6. $15 \%$, $1(43,167,169)$ Enhudrina
Bonlundris ..... 1.5!!
envenomation. ..... 1.4
enyo, Crotahs. ..... 50
Liphatophis. ..... 1\%N. 16
ephippifer, Micrurus. ..... 45
equis (See Bothrops atrox.)
erabu-unagi (Siee Laticauda semifasciata.)
Eristieophis 107, 110, 119, 126
cruthromelas, Bothrops ..... (61
crythrurus, Trimeresurus ..... 11.
Erys. ..... 73. 127
esau (See Trimeresurus gramincus: Trimeresurus
popcorum.)
essalambwa (See Bitis arictans.)
Ethiopia ..... S. -103
Eurone ..... (6. 35, .ins, 71-6, 112, 13.)
ruryxanthus, Mieruroides ..... 36, 38, 48-9, 51, 52, 169
exsul, Crotalus ..... 50
extravasation ..... 181
eydouxi, Aipysurus ..... 158
ere (sizes) ..... 26-7. 181
eyelash snake (See Bothrops schlcgclii.)
fang, functional ..... 万. 18 シ
fang marks ..... 2. 15. 18
Far East ..... $1:: 1$
fasciata, Dcnisonia ..... $1: 2$
fasciatus. Bungarus ..... 116, 120-1, 138, 169
fascintus, Hylrophis ..... 158. 165
fasciatus. Trimercsurus. ..... 119
fasciolatus, Brach!urophis- ..... 140
fasciotomy ..... 23. 18:
fcac. Azcmiops. ..... 116, 126
fei-shans-tsoan (Nee . Inkistrodon halys.)
Fer-te-lance (See Bothrops lanceolatus.) ficldii, P'seudocerastes (See P. persica.) tierce snake (see P'urulcmansia microlepidnta.) filiformis. Mirrurus ..... (i)
Fiji Islands ..... 110 - п.
Fiji snake (See Otmmodron rifiamus.Finland71-ii
First-aid treatment ..... 13-!
 ..... 14 ! •••
five pacer (see .!!kistrollon arntus.)five-ringed smake (See Ihemamsia monlosta.)tiyah (See (Cernstes cerustes.)
Alagellmm, Denisomin. ..... $14:$
flaviceps, Jзияития ..... 116,121
ftaromae'ulatus, Trimeresurиs. ..... 13:
Haroriridis, Trimeresurns ..... 13ะ, 137, 169
Flores Sict ..... 1.77-4i7
 ..... 1.5
fonfoni (See ('unsus rhomboulus.) fousceai. Bothropse ..... 61
fussokéré (See Vehtis curinufus.)
France ..... 71-1i, 169
Fredrik-Hendrik ..... 140-…
Fremeh Guianal ..... N) - (i!
French Somaliland ..... Ki-103
frontal. ..... $1 \times 2$
fromtalis. Micrurus ..... 60, 64
fuko (See C'ansus rosimus.)
frlvius Micrurus. ..... 6. $36,38,48,169$
fumbe (see Juja melamoleuca.)fune (See Itendroaspis (En!!usficeps.)fuscus. . Lip!ısurus1.5
Gabon ..... S. -103
qabonica, Bitis ..... 87-8, 101, 169galobon (see Atheris chlorechis.)Gambia$8.7-103$carmantilla (See Micrurus.)sartersnake :African (See Elapsoidea sumderallii.)black (See Flapsoidea sundcrallii.)Southern (See Elaps 7actrus.)
southeastern (See Elapsoidea sunderallii.)
gartersnakes, African dwarf (See Blaps.)
 1.5! 161
liermathe
71-4; 16:9



simbleal suakes (sieq liruchturophis.)










orandis, Ipisfocthamus_------------------------140, 14i;
(i...ли"

Ereen suake (siee Jixpholidus t|fpus.)


erey shake (See Demasusia psammophix.)
grcui, E:phatophis
1.7




(inlf of Niam----------------------------------------157-67
Cuppy's snake (See Denisonia par.)
ฐurukezi (See Dispholidus typus.)
quttata, Dcmansiu. 140
Ewardae (See Demansia tertilis.)
habu (See Trimeresurus flavoriridis; Trimeresurus mucrosqu(tmatus.)
habu:
Arisan (see Trimeresurus monticola.)
Chinese ( See Trimeresurus mucrosquamatus.)
Okinawan (See Trimercsurus flaroviridis:
Trimeresurus okimatensis.)
Sakashima (see Trimeresurus clegans.)
Taiwan (See Trimeresurus mucrosquamatus.)
hacmachatus, Hemachatus_-............86-7, 89, 94-6, 169

haia amia (See V'ipera lebetina.)
haia soda (See Walterimesia aegyptia.)
hajc, Ťaja____-_-_-_78, 80, 86-7, 95, 106, 108, 13 t, 169
half-banded snake (See Brach!urophis semifasciatus.)
half-girdled snake (See brachyurophis scmifasciatus.)
half-ringed snake (see Brachymrophis semifasciatus.)
halys, Agkistroulon_3s, -23, 72-3, 75, 106, 112, 116, 125,
$132.23 .136,169$
haltsotter (see Agkistrodon halys.)
hamadrayad (see Ophiophagus hannah.)
hami (See Agkistrodon haly,s.)
hamah. Ophiophagus__....116, 119, 12.), 132., 135, 169
hartwickii, Lapemis_-_-_-_-_-_-_-_-_-_160,166,169
harlequin (See Micrurns.)
Harlequin snake (see Micrurns futrius.)
harricttae, Aspiflomorphus

hediarri. Porapisforahamus
14:3, 144, 152




$\therefore$ i. 142
hemprichii, Mirrurus -i6), 19
harahlien, ditis. Ks
 ..... $111 ;$
himehahte (See Trimeressurus okimenemsis.)
himmin (see Atractaspis mierolepidota.)
himai, lipera ..... $-8 \times, \quad 10: 3$
h'ion (see litis gabonica.)hiraguchi (See Aglistrodon halys.)Hispaniola(i巳
hispidnes. Itherix ..... sif
hollandi, Micrurus_ ..... (fi)
Monduras. ..... 17. 513
hontipeh pura (See Naja naja.)hoogly pattee (See Eמhhdrina sehistosa; Enhbdrinaralakatlm.)
Hoplacephalus. ..... $142,144,149$
horingadder (See litis caululis.)
hornsman (See litis cormutu.)
horo (See Bitis nasicornus.)horridus. Crotalus.(6. 36,43
huggorm (See Vipera berus.)
hundred pacer (See Agkistrodon acutus.)
hundred-pace snake (See Agkistrodon acutus.)
hundred segment snake (see Bungarus multicinctus.)Hungary71-6
hutschlangen (See Noja.)
hutschlange, schwar\%eisse (See Saja melanoleuca.)
huttoni, Trimeresurus_ ..... 118
hyappoda (See Aglistrodon acutus.)
Hydrelaps. ..... 1.5s, 162
Hydrophidae_ ..... 157-67, 169
Hydrophis ..... $158,162,164-5$
hyoprorus. Bothrops- ..... 61
hymualc, Agkistrodon. ..... 118, 128
ibiboboca (Nee Micrurns lemniscatus.) ibibuka. Miсти'и.s ..... 60
imululn (See bitis ariptans.)
Ifni ..... 77-84
iglesiasi, Bothrops ..... 61
ikahcka, Micropechis ..... 142,150
iloyi (See Naja haje.)imbricate_182
imfezi (See Naja migricollis.)
iNambezulu (See Dispholidus typus.) incision. ..... $1+5$
India ..... $83,115-30,133,169$
inDlonlo (See Ritis caudalis.)
Indonesia ..... 115-30, 169
infralabials ..... 182
inhlanho (See Dispholidus typus.)
inornata. bitis ..... 88
insularis, bothrops ..... 61
intermedins, Agkistronon halys. ..... 75-6
intermedius. Crotalus .....  10
internasal(s) ..... 182
intestinalis, Maticora ..... 116. 122, ..... 132
intraperitoneal ..... 182
iNyushu (See Dispholidus typus.)ipHimpi (See Hemachatus haemachatus; Najanigricollis.)
Iran ..... 10.-13, 169
Iraq ..... 10. -13
irrbarthart (See P'scudechis australis.)
irregularis. 1 tractaspis ..... 4
isikhotsholo (See Naja nivea.)
isazomus, Mi"rurns ..... fi0
Israel ..... 81, 99, 103, 10."-13, 169
Italy ..... 71-6, 169
itapetiningae, Bothrops. .....  1
Ivory Coast ..... $8.7-103$
ivasakii, Culliophis ..... 132
jajaraca, Bothrops ..... 61, 66, 169
Jamaica ..... 62
jamesomi, Denlrouspis. ..... 8f, 93
Japan_ ..... 131-8, 169
jararaca (See Bothrops jajaraca; Bothrops neuriedi.)
jararaca pintada (See lothrops nсииiedi.)jararacussú (See Bothrops jararacussu.)jararacussu, Bothrops_-_-_----------.-.-.-.-.-. 61, 66, 169jarlons (See P'scudechis australis.)
Java ..... 11.-30
Java Sea ..... 1.57-6.
javanicus, Bungarus. ..... 116
jerdonii, Kerilia ..... 160
jerdonii, Trimeresurus. ..... 118. 132
Jordan. ..... 10.)-1.3
jumping snake (See Bothrops nummifer.) juxtaposed (scales) ..... 30, 182
kaapse geelslang (Šee Naja nirca.)
kadel nagam (See Hydrophis spiralis.)kadel pambu (See Hydrophis spiralis.)Kai1810.5
kak ..... Mis.)
kale shootursun (See Mudrophis obscurus.)
kalelea (See Causus rhombcatus.)kalilelala (See Dispholidus typus.)kanburiensis, Trimercsurus118
kanuadi virian (See Vipera russclii.)
Kancobra (See Naja nivea.)
karawala (See Bumgarus cenlonicus.)
karsotter (See V'ipera wrsinii.)
kasambwe (See Causus rhombeatus.)
Kashmir$11 .-30$
kassa (See Bitis arictans.)
katengensis, Itheris ..... $4 i$
kaulbacki, Trimeresurus ..... 11.
kauryala (See l'ipera russclii.)
kawon (See Fimhudrima schistosa.kawosia (See Naja nigrimollis.)kawriya (See bumbarms camblews.)kaznakori, V'ipera7ㄹ. 10 mi
keautia (See Naja naja.)
kellogi, Calliophis. 116
kendawang (See Maticora bivirgata.)
Kenya
Rerilia
160. 162
kerril patte (See Hydrophis nigricinctus.)
khangala (See Dispholidus typus.)
khuppur (See Echis carinatus.)
kigau (See Naja niaricollis.)
kiiri (See ISitis arictans.)
kikanga (See Naja nigricollis.)
kinangananga (Sce Cuusus defilippii.)
kingii, IIydrophis15\%
kipara nunga (See Jaja haje.)
kipili (See Ritis arictans.)
kipiri (See Bitis arictans.)

kisigosogo (See Atheris squamigera.)
kissadi (See Bifis musicormus.)
klapperschlange, prairie (See Cratulus viridis.)
klapperschlangen (See Crofnhus.)
klossi, Ituirophis
kobra (See Naja.)
kokodion (See lifhis carimatus.)
kokokeyamulinga (See Dispholidus t/umes.)
Kolpophis
160, 162
komourtiou (See Daja nigricollis.)
konigskobra (See Ophiophatgis hammah.)
koning-pofadder (See lbitis !/abonica.)
konkati (See Theloformis kirflandii.)
kondhand slang (Nee Elapsoidea sumderallii.)
koperkapel (See Naja nivea.)
kopi virian (See Trimeresurus trigonocephalus.)
Korallenottern:
Arizona (See Micruroides rurfaranthus.)
Ehbte (Siep Micrurus.)
Harlekin (See Micrurus fulrius.)
Kiesen (See Micrurus spixii.)
Schlank (see Leptomicrurus.)
Korallenschlange, Africanische (see Wlaps lacteus.)
Korea
kouti (See Vipera lebetina.)
krait :
banded (See 13 mgarius fasciaths.)
black (See Bungarus niger.)
blue (See Jungarus candidus.)
Ceylon (Sce Jungarus coulonicus.)
common (See Bumgaris candidus.)
common Indian (See Bungarus caeruleus.)
Javan (See 1 Bugarus javonicus.)
lesser black (See Bungarus lividins.)
Limme's sea (See Laticanfa laticaudata.)
Malayan (See Bungarus candidus.)
many-banded (See Bumgarus multicinctus.)
red-headed (See lsungarus flaviceps.)
Taiwan (See Jhumarus multicinctus.)
Taiwan banded (See kungarus multicinctus.)
Wall's (See Bumgarus walli.)
yellow-headed (see 1 Bunyarus ylavicep.s.)
kranawang (See Ifaticora bivirgatu.)
lerefftii, Aspidomorphus_ 140
kreuzotter (See V'ipera ber"us.)


butah seme trimer rexume ukimaronsis．）


kusarl hehl 1siee ligerés renswelia．）

K！lwalt111 i
に゙いとかっため ..... 11．－－30

Thbinlis．Trimmersurnex ..... 11
f．anchexix ..... 1）56，（il－ㄴ，（is），16it
furhosis．lifis（ser lifis atictans．）
－，＇． 1 ＇． 1 ， ..... 4i，9f
forrise limmorms ..... 1．54， 164
（＇1rinutıs．）
lımin！foni．． 1 pisfoc＇иlamus．s ..... 140． $1+1 i$
Lathemoprollis． ..... 51
lancelheats，Imericala（see liofhrops．）


limectulatils．liollorop）．s＿ ..... 61．（96）， 67
 ..... 60
lunsheronii，JBothropus ..... †の，－小，\＆1

Ianzenotfern，Amerikinniselve（sere lBothropse）
Tanmennttern，Asiatisehe（See Trimeroshrose）
Lumzenotern．Griefschwanz（See Bothrops schleyclii．）
【ans ..... 11．5－30
Tapermis ..... $160,16: 3,166,169$
fopemoides．If yulrophis． ..... 154
lareersenled smake（See Denisomia superba．） fatasti．Tipera ..... デ・ 7t－5．Ts st
latcralis，Bothrops． ..... th
 ..... 160）1．14i．：
laticrunletet．Laticondre ..... $16(1)$
latirallariv，Jicrafus ..... t
Intifasciutus，Virarmos ..... is
fatimastris．Psemdrocomstes（see Efisticophis macmahonii．）
I I）． ..... 7． 1 バー
I．ebinnonn ..... $10-1.19$
lelectiure Tiperer － 7，74－\％，81，103，106，111，116，127，
13．7． 169
lobolobolo（see liitis arictans．）
lefa bin kimm（sibe ferostes rerastex．）
legwere（See Jispholidus t！！pus．）
Icmmiscatus．Jicontus ..... （i）
lepullus，（rootrelus． ..... ：76，．， 0
L．11fomira 1 fols ..... i－1． 63
Leptophis ..... 11
lerabe（See Bitis arictans．）
Masser Sinnda Islands ..... $11.1-30$
lencomelas，Itractaspi． ..... $\therefore 10: \%$
libomat（See Bitis arictams．
Libyit ..... $-77-54$
lichenosus，Bothrops ..... © 6
lichtenstcinii．Causus． ..... 88

Hultl (sien bitis ariatame.)


118. 120


lojatulis. Borlhrops.（i）

echmman fser Mationta illtestimalis.)
[hiliphise (soce Whtiment intrestinttis.)






luknkuru1 (See Itispholitus tupus: Thelotornis
liritlumalii.)


こ1. 1ヶ゙
macelcllandii. ('alliophis.
111. 1:i: :
mut'mahomii, Wristicophis._-_-_-_106; 110, 116, 120
macalimel (See Bothoons castchmandi.)
macabrel (See Rothrops cosstchandi.)
maciolenis, Trimoresurns゙_
118, 129

mafuliceps. Calliophis_------------------------------116




malabasahan (See Hybrophis ormutus.)


Mali_ . . . . . . 37 it
malle snake (See Demunsiat tertilis.)
mamba (See Dembloaspis: Dispholidus t!pus; Soja
melanolcuca.)
mamba :
black (See 7ronlomespis polylepis.)
black-monthed (See Demblouspis polylepis.)
brown (See Dendroaspis polylepis.)
common (Seq Dewaroaspis polylepis,)
East Ifrican Jameson's (See Dendroaspis
jamesoni.)
eastem green (See Dendroaspis anglisticeps.)
Ereen (See Dendroaspis am!usticeps; Dendroaspis
jamesomi: Dentomaspis polylepis:
Dendroaspis vimidis.)
green tree (Šee Dendrouspis riridis.)
grune (See Demmoaspis airialis.)
Hallowell's (see Domhouspis viridis.)
Jameson's (See Dcmaroaspis jamesoni.)
pale-monthed (See Dcmaroaspis angusticeps.)
schwamzen (see I) cimboaspis poly/epis.)
South Ifrican (see Dembroaspis angusticeps.)
Traill's green (See Dendroaspis jamesoni.)
West Ifrican (See Dcmbroaspis ririlis.)
western green (See I)entroaspis virillis.)
mamba vert (See Dendroaspis jamesoni; Dendroaspis
viridis．）
mamillaris，II yulrophis 158
mamushi（See Aghistrodon halys．）
mamushi，Japanese（See Aglistrodon hulys．）
mammshi，Korean（See Aglistrodon halys．）
manapare（See Bothrops atrox．）
manda－dalag（See Trimercsurus flatomaculatus．）
mangrove snake（See Roiga Icmdrophila．）
mano de piedra（see 7 Bothrops $n$ ummifer．）
many－ringed snalie（See Vermicella multifasciata．）
mapana（Sice Lathesis mufus．）
mapanare cejula（See Bothons schlegclii．）
manpipe（See Lachesis muths．）
maphpire ダذuana（s゙er Larhcois mufts．）
marabe（See Bitis arictans．）
maracaboia（Seee（irotalus d．tervificus．）
march snale（See Jenisonia sionuto．）


massasangil（see Sixtrurus catchatus．）
Matimora
119．122，134
Maluritillial．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

medhas．liothumps
$1 ; 1$







mertoni，Hydrophis
160

## métyi（See Crastes eroastes．）


m＇fesi（See Jiaju nigricollis．）
mhiri（ See Bilis urictans．）
Micoocephetophis＿
160，16＂， 166
mirovolepirlota．1tructuspis＿－78．81，88，99．100，106，10N－9）

 mierophthalmus．Rothrops． $1 ; 1$
Micrumoines ＿37－8，ढ1－2． 130

Midale East（See Near and Midale Fiast．）
milagy kadiyan（See Hymbonhis fasciutus：Micro－ rephalophis ！ro（acilis．）






moceasin，Mexixan（see Iglistombon bilincatus．）
moceasins（See ．Igkistroron．）
morlesta，Demamsia＿－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－140
mokassinschlange，Mexikanische（See Igkistrodon bilincatus．）


moma（See Bitis urictans；Jitis yabonica．）
mônemé（See litis gubomira．）




 112．117．146
Mount Lamington snake（s゙ee Ipistocalamus famingtoni．）
Mount Stanles suake（See Toricoralamus stanleyanus．）
Mozambique
$8.5-10: 3$
mpili（See Jaja haje．）
mpiri（See Vaja haje．）
mpoma（Siee Iitis arietums．）
mисrosquamatus，Trimeresurus＿＿－＿－＿－118，132，137，169

mulwa snake（See Demunsia tertilis：Peculferbix alustralis．）
mulda smake．dustralian（See Psewhechis australis．） mulda suake，New Guines（Nee Psemalerhis papuanus．）
Muller＇s suake（SGee I．spidomorphus mucllerii：
lilimonhlocenhalus biconlm：）





muyirima（See Voju melamolewen．）
mwe bwe（See liprof ruserlii．）


narhikn（Sice Jinju migrierollis．）
nag（See Vaja maja．）
naga pambu（See Víja naja．）
naluraca（Sce Bothrops Husutus：Bnthiops schicgelii．）
ज゙ィ ju＿＿f，10－1，79，80，\＆
134． 169
 natla pambur（See Voju min．）
nalukonge（see Afticris squamigera．）
namahamba（see Dombouspis：Hispholirlus：also
applied in mom－poisonoms suakes．）
＂arilucci．Serpfonıicrorus
（i）， 63
narrow－landed shake isee liarbumbophis fasciolatus．）


manornviper（see bifis musicornis．）




natwama（sep bitis arictans．）
nchumeira（See Vaja hajc．）
ndemabunaṭo（see Dendiouspis polylepis．）

necklace suake，Ifrican（Siee Elapsoiflea sumderallii．）
necklace snake．Iustralian（See Frachmmophis australis．）



N゙ットは！ ..... $11.8: 3$
Nullapriamise ..... 714
 ..... $18{ }^{\circ}$
 ..... 1がㅡㅡㄹ
ne：luricali，linthrops． ..... （11，（i7．16？
Now（Elltoxa ..... $110 \ldots$


 ..... 17 －in
niedori，Mírurns ..... （6）
Niconar lshand ..... 11．n－is1
Niger ..... $77-41$
 ..... 111
Ni＿ertal ..... 4． $10:$ it
night adher，African（See（＇ausus．rhombeatus．） nigure，P＇scrulohuje． 413 ， 17
nignesceens，（＇ulliophis． ..... 116

nigrocinctus，Jydronh is ..... 160
nimrocinctus，Mierorme． ..... 14，53，60，16！
nigrostriatu，Donisomis． ..... 14
nigroviridis，bothrops． ..... 4
nifschoi．．llheris ..... 86,98
nirea．Vouja ..... $8 \mathrm{f}-7$ ..... 96，16！）
njoka ishanga（See Elapsoiffa sumderallii．）
nocturnal ..... 18.
nonemb（Nee ditis masiommis．）nornes（See Soterhis scutatus．）
Sotcchis ..... $139,143,145,150,160$nourodiont（See Itrartuspis microlepidota．）asuweila（See Jiuja haje．）nsuweira（See Naja haje．）nuchalis，Micrurus48
nummifer，bothrops ..... 48． 55
nyamwiro（See Saja nigricollis．）nyarukededi（See Dispholidus typus．）
Nyasalank ..... k．$-10: 3$
nymanni．Psendapistocalamus． ..... 143Nyman＇s snake（See Psculdopistocalamms nymanni．）nyoka bwana（See Naja nigricollis．）
Ohi140 －п．
14in
ohisa（See Dendroaspis angusticeps．）
，h．sewrus．H！drophis
182
occipitals
ochkovaya zmeya（See Ňaja naja．）
oelar（See oraj．）
velar idjo（See Trimeresmrus armmincus：
Trimeresurus poperormm．）
O！！modon ..... $141,143,145,151$
oharko（See Oxpuranus sentrllatus．）
okinarensis．Trimeresurus ..... $13 \geq .137$
Old World vipers（ See T゙iperidar．）oliraeca．Demansia140,147
olwero（See Bitis arictans．）$10 . \overline{-13}$omeja（See Dendroaspis engusticeps．）oni－awohabu（See Trimeresurus gramincus．）onwarrkoo（See p＇sendechis australis．）oo－woo－shay（See Agkistronon achtus．）




Trimaressuras perneroriam．）



araj kalakal（Ser Trimeresurns punicems．）
wraj lemath（See Aglistrodom rhondostoma：
Trimeresurus punicros．）
oraj shaduk（See Niaju naja．）
oraj fotok（See Ophiophagus hemuth．）
oraj welang（Sce Bungarus fasciatus．）
oraj Weling（See Bumgurus randidus．）
orange－bellied snake（See Psedulchios australis．）
ornamental snake（see Donissnin maculata．）


oro otto（see Maticora intestimalis．）
oroped（See Bothrops schenclii．）
otter，kaukasus（See Vipera kaznakovi．）
otter，puff（See Bitis arictans．）
otter，sandrassel（See Lehis carinatus．）
ottern，tiger（See Notechis．）

pachecoi，1ficrurus（See Micrurus nigrocinctus．）
pachi virian（See Trimeresurus trigonocephalus．）
Pacifie Islands．
pagha wubré（See Atractaspis microlepidota．）
pain
8， 9

Wakistan，West $110,115-30$
pala polonga（See Trimoresurus trigomocephalus．）
palliticeps，Denisomia 142
pama（See Bumgarns fasciatus．）
I＇anama
47－58
papala（See Trimeresurus wagleri．）
рариания，Pseudechis
$143,152-3,169$


Paranaja
86，89， 97
Parapistocalamus．
$139,143,145,148,152$



parrot snakes（See Leptophis．）
parviceps，Hydrophis 160
patoca（See Rothrops lansbergii．）
pee－un（See Bumgarus caerulcus．）
perali（See Ritis nasicomis．）
Pelamis
87．15\％，160，162， 166
Percy Island snake（See Demansia psammophis．）
peringueyi，Bitis88

Persian Gulf 108．157－67
persicus，Pseudocerastes 106，111，116， 169
persicus，Vipera（See Psemdocerastes persicus．）

peruvianus，Rothrops＿－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－61peruvianus，Micrurus60
petechiae ..... 7， 182
petia（See Hcmachatus hacmachatus．）phakhuphakhu（See Naja nigricollis．）Philippine cobra（See Naja naja．）l＇hilippine Sea$1.96-67$
Philippines ..... 131－8， 169
Philothammus ..... 90． 93
phoorsa（See Echis carinatus．）
picadoi，Bothrops ..... 511
pirtus，Boftrops． ..... ．；1
pifanoi，Bothrops ..... fil
pigmy rattlers（See sistrurus．）
pineapule snake（See Lachesis mutus．）61
piri（See Bitis arictans．）
pisciuorus．Agkistrodon． ..... 6，36，39，万3，75．112， 13.
pit． ..... 26， 169
nito（See Maticora bivirgata．）
pit viper：
ashy（See Trimeresurus pumicens．）bamboo（See Trimercsurus gramincus．）
Chasen＇s（See Trimeresurus chaseni．）
Chinese（See Trimeresurne monticola．）
crossed（See Bothrops alternatus．）elegant（See Trimeresurus elegans．）flat－nosed（See Trimeresurus puniccus．）Godman＇s（See bothrops godmani．）green（See Trimercsurus trigonocephalus．）Hagen＇s（See Trimeresurus hageni．）IImalayan（See Agkistrodon himalayanus．）jumping（See Bothrops nummifer．）Korean（See Agkistrodon halus．）Lansberg＇s（See Bothrops lansbergii．）
long-nosed (See Agkistrodon acutus.)
Me Gregor's (See Trimeresurus flaromar"llafus.)
Malayan (See Agkistrodon rhodostoma.)
Maximilian's (See Bothrops ncurciedi.)
Mongolian (See tokistrodon haths.)
Monticelli's (See Bothrops monficclli.)
mountain (See Trimeresurus monticnla.)
Okinawa (See"Trimeresurus okinneensis.)
l'allas (See Agkistrodon halys.)
latagonian (See Bothrops ammodytoides.)
l’olillo (See Trimeresurus flaromaculatus.)
pointed-scaled (See Trimeresurus mucrosquamatus.)
Pope's (See Trimeresurus popcorum.)
purple spotted (See Trimercsurus
purpurcomaculatus.)
Schultze's (See Trimeresurus flaromaculatus.)
sharp-nosed (See 1gkistrodon acutus.)
shore (See Trimeresurus purpureomaculatus.)
speckled (See Trimereswrus wagleri.)
spotted (See Trimeresurus monticola.)
Sumatran (See Trimeresurus sumatranus.)
Wagler's (See Trimeresurus uagleri.)
white-lipped (See Trimeresurus albolabris.)
yellow-suotted (See Trimeresurus flaromaculutus.)
pit vipers (See Agkistrodon; Trimercsurus.)
pit vipers, Central and South America (See Aglistrodon;
Bothrops; Crotalus; Lachesis.)
pit ripers，United States（See Agkistronon：Crotalus： Sistrurus．）
plate． ..... 182
platurus，Pclamis． ..... 160． 166
Pliocercus ..... 51
nofadder（See lBitis arictans．）
Poland ..... 71－6
polon thelissa（See Agkistrodon hypuate．）polylepis，Dendroaspis．$86-7,93,96,169$
polystictus，Crotalus． ..... 50
polyralent ..... 1ぶン
pomnica（See Acanthropis autarcticus．）
poperorum．Trimeresurus ..... 118， 129
porphyriacus，P＇scultchis ..... 143． 153
Portugal ..... －71－1；
Portuguese Guinea ..... 8． $1-103$
postocular ..... 14．：
potai pambu（see Lapemis curtus．）
Pracscutata ..... 160．16：
prairie rattlesnake（see（＇rofolus viridis．）
pratti，Apistocalamus ..... 140
l＇ratt＇s snake（see Apistocalamus pratti．） precautions to avoid snakebite ..... －3－3
prefrontal ..... 27,183
prehensile ..... 183
preocular ..... $\because 7,183$
preussi．liltrocalamus． ..... 143
pricci，Crotalus ..... 363， 20
proximal ..... 183
psammophis，Iomansia ..... 140
pshissapa（See A゚aja molanoleura．）
P＇scullechis ..... $139,143,14 \pi, 152,169$
lsemblomerustes． ..... $10 \overline{6}, 110,119,12$
l＇seudocerastes bicomis（sce l＇seudocerastes persicus．）l＇semdocerastes latirostris（See Erristicophis
marmahomii）
Pseudohaje ..... Sī，S！）， 97
psyches，Micrurus． ..... （i）
ptosis． ..... 8． $10-1,183$
l＇uerto Rico ..... fiㄹ
puff adders（See Bifis．）pul surattai（See Echis carinatus．）pulcher，Bothrops．－lil
punctata，Dcnisonia ..... $1+2$
punctatus，Bothrop．s ..... \％）， 61
puniceus，Trimeresurus ..... 11s
pupil（ere） ..... 183
ригрисотаснlatus，Trimeresurus ..... 118， 130
pusillus，Crotalus ..... － 0
putumayensis，Micrurus． ..... （6）
pweré（See Causus rhombcatus；Eichis carinatus．）pyrrhocryptus，Vicrurne（3）
m！rohus．Acanthophis ..... 140,146
qualitative difference in chemistry of renoms ..... $-7$
rabo de chuncha（See Bothrops punctatus．）
rabo de raton（See Bothrops ncglectus．）
racers，West Indian（See Alsophis．）
raj nag（See Ophophagus hamah．）ramsayi，Denisonia142

ratlownalo

Arulsal（Siex C＇rolulus unionlow：）

Devtean bismy（sere Nistruras rators．）


Majave（sime（＇motelles serotulaturs．）

1＇arithe（sisee（＇totulles virillis．）
 miliarius．）
read（see troblulus rablere．）
red diamoull（sore（rootalus raber．）
rock（seer crotulins lepillus．）
sonth American（sees（＇rotulns durissus．）
somthern（sees Nistrorus miliserills．）
sonthern Pacilice（See erotatus rividis．）
figer（See cropalus tigris．）
timber（stee（rotulus horvidus．）
tropicall（see（＇rotalus dmrissuls．）
velvet－tail（seee（＂rotalus horvidus．）
Western diamond（see erotatus atron．）
Western pismy（ See Nistrums miliarills．）


 red snake，striped（See Calliophis sauteri．）
red－hellied snake（see Aspidomorphus sfuamulosus．）
red－natued snake（See ．Ispidomorphus diarlema；
Pseudelaps diadema．）
red－ringed snake（see（etlliophis macelellandii．）
red tail snake（See Trimereswrus stejmegeri．）

$15.5,184-5$

1：31．1：3！），1．5
remedies（See treatment of smaebite．）

fererve fillter ．．．．．．．．．．．．．．

irtirnlatht Itroltaspis



Fhorlostoma，iqlistrorlon＿＿6，7，38，万3，75，112，118，128，
13．7． 16.9

ringed snake（See Vermicolla amulata．）
ringhals（See Hemachatus hacmachatus．）
rinkals（See Hemachatus harmachatus．）
Kio Muni ．．．．．．．．．．．．．．．．．．． 10 ：

diver jatk（see Bifis nasicommis．）
river snake，（＇larence（See Tropidechis carinatus．）



Losen＇s smake（See Denisonia fasciata．）
rostral
37,183

 .18
rulure，（＇polellus＿ 1i，236．41．Fin
rumoulls（sue Jthrois mifsehei．）
 1：3\％， $13: 1$



lこい：いいう！$x=-10 \%$


Stalnt Idrcia Is．
5．5）－6：9

sakamala（Siee Nuju haje．）
salthush snake（Séa Demumsia psammophiso）
sambl natter（sere l＂ipfre ammodytes．）
sabulrasselotter（see Fifhis rerimatus．）
sandrasselotter，Igyptische（See fichis carimatus．）
sangehnl（see limn！arus cacrulens．）
sauteri，Calliophis．
12：2，1\％3

sawah tadung（see Trimcresurus puniccus．）
saw－scaled viper（sere Eehis．）
Scanclinavia
71－i

schitomordnik（see Igkistrorlon halys．）
schlegclii．Aspidomorphlıs 140
schicorlii，Bothrops．
$49.50,55,61$
Schlesel＇s snake（see Aspidomorphus sehlegelii．）
schmuckottern（See Crlliophis．）
Schouten
scissors snake（See Vipera russelii．）
scorteccii，Atractaspis88
srututus．Aspirlelaps．
86,91
scutatus．Votechis
$6,143,150,169$
seutellatus．Oxymr（tum＿＿．．．．．．－10－1，143，151，169

scutulatus，Crotalus＿
（6．36，41－2， 50
sea krait．Schneider＇s（See Laticauda colubrima．）
sea krait，yellow－lipped（See Laticauda colubrina．）
sea serpent，common（See Hybrophis cyanocinctus；
Laticaula semifasciata．）
sea smakes（See II ydrophiduc．）
sea snake：
amphibious（See Laticanda colubrina．）
Annandale＇s（see Kolpophis annamdelei．）
annulated（see Hybrophis ryanocinctus．）
banded（See Laticanda colubrima．）
banderl small－headed（See Hyrlrophis fasciatus．）
banded sellow－liphed（See Laticauda colubrina．）
beaked（See Fublullina sehistosa．）
hack－banded（See Laticanta laticaudata．）
blue－banded（Siee $/ I$ bliophis cyonocinctws．）
bluish small－headed（See Hydrophis cacrulescens．）
Boiens（See Emh！utrina ralakadyn．）
broad－banded（See II wlirophis mamillaris．） broad－banded blue（See Laticauda semifasciata．）
Brook＇s smallheaded（See Hydrophis broohei．）
brown（see dipuswrus su．）

Cantor's (See Microcephalophis cantoris.) common (See Enhurtrina schistosa.)
Crocker's (See Laticauda proclicri.)
Daudin's (See Hydrophis nigrocinctus.)
Darwin's (See Hydrelaps darminicnsis.)
Dubnis (See Aipusurus dulnisii.)
elegant (See IIydrophis clegams.)
graceful small-headed (See Microcephalophis gracilis.)
gray (See Hydrophis toryuatus.)
Gray's (See Mydrophis ornatus.)
Grey's (See Eiphalophis greyi.)
Gïnther's (See Hydrophis tormuatus.)
Hardwick's (See Lapomis hurduickii.)
hook-nosed (See Finhyltinu schistosa.)
Ijima (See Fimudocephatus ammlatus.)
Jerdon's (See Kerilia jerdomii.)
Jew's nosed (See Enhudrina valakadm.)
John's (See Microcephalophis aracilis.)
King's (See Hyhtrophis kingii.)
Merrem's (See Hudrophis cacrulescons.)
narrow-handed (See Hydrophis spiralis.)
narrow-headed (See Microccphalophis gracilis.)
olive hrown (see fipysurus lacris.)
parti-coloured (S.ee Prlamis plafurus.)
pelagic (See Pclamis mlaturws.)
1eron's (see Acalyptophis peronii.)
Peters (See Hudrophis bituberrulatus.)
Port Darwin (See IIfilrelap. darminiensis.)
reef (See Hydrophis ormatus.)
ringed (See Embloccphahus (tmumlatus.)
IRnssell's (See Hudrophis obsemrus.)
Samoan (See Laticauda scmifasciata.)
Schmidt's (sees lraeseutata riperina.)
Semper's (See Ilymophis semperi.)
Shaw's (see Lapomis curtus.)
smith's small-headed (see Hylrophix purvierps.)
spine-tailed (see dipuswrus cydonxi.)
spotted (See H!hirophis ornatus.) Stoke's (Scee Astrotiat stolessii.)
Viet Nam (See Lapemis hardrickii.)
viperine (Sie Pracscutata viperina.)
wandering (Siee Laticanda laticandula.)
rellow (See H!ufrophis spiralis.)
sellow-bellied (see Pclamis plutwrus.)
sea snake bite_
4. 11. 1.17-6
seeschlangen, plattchen (See Pelomis platwrus.)
semelo (See Trimeresurns !rmmincus.)
scmifasciata, Laticourla_ 160



serpent du bananier (See Dondroaspis jamesoni;
Dendroaspis viridis.)
seven pacer (See V'ipera russclii.)
shaushawane (See Bitis cundalis.)
shehitomorluik (See Aglistrodom halys.)
shenshewane (See litise comblalis.)
shfifon (See Crrastes cerastes: Psendocerastes fieldii.)
shiddil (See Kerilia jerdonii.)
shield
27. 183
shield-nosed snake. African (See Aspidclaps scutatus.)
shield-nosed snakes (See Aspillelaps.)
shield snake (See Aspinclaps scutatus.)
shon-k fusition
shontur sun (See Mylrophis obscurus.)
short-fanced suake (see l'hlrocalamus proussi.)
short-tailed snake (See Rhumchoclaps bertholdi.)
siana (See Dispholidus typus.)
sidewinder (See Crotalus cerastos.)
Sierra Lenne $-10: 3$


Ninkiang _.... . . 11 . :
sirncllell (See Jarlhesis mutus.)
sistrurus _37. 39, 43, ธ1, 57
sleeping goumh (see Bothrops schlegclii.)
snakehite_-----------------------------------2. 41, 1א3
smakebite. cases. -.3! 41
snakphitr. first aid for_-------------------------- 7. 13-19
snakehite. tirst-aid kit for _-
snakehite. medical treatment of ----------------- $7,13-24$

smake of hundred design (Nee .lakistrodon acutus.)
snake renom:







Sumali:1 $\quad$ Gi $10: \%$
songo (See Denhtronspis an!usticeps: Jendroaspis polylepis.)
songwe (See Henolroaspis polylepis.)
South Chinat Seat $1.17-10$
South West Ifrica ..... s: $10: 3$
Southwest I'acitic ..... $1.17-43$

Splain

- $11-6$
Spanish Saharia ..... $37-84$
sphcnophrys, Bothrops. ..... it
spiralix. Ifydrophis. ..... 160,164
spitzkopfotter (See Vipora wrsinii.)spirii. //icrurus60,64
spotted-headed snake (see Demansia olivacer ;
Denisonia psammophis.)
spotted snake (See Jonisomia punctata.)
spotted snake, little (See Jenismmias pumefuta.)
spuugslans (See If cmachatus hacmachatus: Vaja nigricollis.)











veribusus, Trimerevarus ..... 114
sultoatulals ..... $2 \mathrm{~A}, 1 \mathrm{x}: 3$
sulmeoltur ..... 15:
shhterranmath ..... 18:!
Sultar ..... 8. $\overline{-1}-103$
sull sict ..... 1.77-1i7
Sumatra ..... $11.5-30$
 ..... 118
-thateath smakes (sioe Matiento.)
vendewollii. Bllupsuidere. ..... 7. $8,80,865,9.4$
smbsahuni (Now Thelotornis liefloullii. stherl) suake ( See Itchisonia superba.) xuperther, Je'mistumin. ..... 142.148
 7t. At, 8s. ..... 103, 111, 127
sumra-sumal tuberoles. ..... 183
supralablals. ..... 183
supracocular: ..... 183
surattal pambu (see Behis carinatus.)
surinam ..... 5:-6:)
vแrimamensis. Micrurles. ..... (i6)
surucucu batiabo (see bothrops bilincatus.)
sutt, Denisonia ..... $1+3$
suture ..... 183
swartnek koperkapel (See Naja nigricollis.)
Niwa\%ilam ..... -10:3
sweeda (See Naja nigrionllis.)
swelling ..... 7-9. $18: 3$
Switzerlaud ..... 71-fi
symptoms and aftere effects of:
crotalid bites ..... 4. 7, 8, 14, 17, 22-3, ift, 67-8
elaphed hites. ..... 4, 7, 10, 1上, 14, 18, 21, 62, 12?
seat smake bites --------------- ..... 4. 11. 1.57-4i4
riper bites $4,7,9,11-2,18,22-3,83,109$
Syria ..... 10.7-13
szechwan ..... $11.5-30$
tachilett. (See E'chis carinatus.)
tachilt (See Cerastes cerastes.)
tadioko (See Naja muja.)
tadung munger (See Waticora intestinalis.)
T'achnmenis perwriana ..... 11
taipan (See Orymranus scutclatus.) T'aiwan ..... 131-8. 169Taiwan-hai (see Calliophis sulleri.)tamaga (see bothrops lamsbergii.)tandaruma (See Vipera superciliaris.)Tanimber (Timor Lant)140-~~,
Tanzania ..... $85-103$
Tasmania ..... $140-\pi$
Tasman Sea ..... 1.75-4i4
tchissapa (See Psembohnje goldii.)
tedong naga (See Vaja naja.)tedong selar (See Ophiophagus hannah.)tel-karawala (see bungarus ceylonicws.)temple snake (See Trimercsurus uagleri.)temporals183
terrestrial ..... 18
fextilis, Demansia ..... 140, 147, 169
Thailand ..... 115-30, 169
Thallosoph is ..... 160, 10:
thamaha (See lsitis arietans.)

Hatta mam (soe Hybloophis mamilluris.)Hiliby (see leifis arictuns.)Tibey11:- -30

Hersmake (Sere Itoplocephalus stephensil: Votechisserututus.)Anstralian (Seer Notechis sculatus.)black (sere Soterhis se"ulatus.)Krufters (Ker Votchis sentatus.)
tigris, Crotulus.30, 50
timba (See Bothrops nummifer.)
Timor Sea ..... 1.77-6i7
'Tobago ..... 5!) -69
tobob, chingu (See 'fothrops nummifer.)toboba de pestana (see bothrops sohlegclii.)tofoni (See Hehis carinatus.)
Togn ..... $8.0-10: 3$
loka (See Dendroaspis jamesomi.)
tomigoff (See lBothrops atrox.)
tonkinensis, Trimeresurus. ..... 118
torciopelo (See Bothrops atrox.)
torquatus, Hydrophis. ..... 160
Tortuga Is. ..... 50
tortugensis, Crotalus. ..... 50
tomlou (See Bitis masiromis.)
toumon (See litis masirornis.)
Toxicocalamus. ..... 139, 143, 145, 154
toxin. ..... 18.3
transuersue, Crotalus ..... 50
treatment ..... 13-24
tree snake (See Dispholidus typus.)
tree snake:
black (See Dispholidus typus.)large brown (See Dispholidus tupus.)large green (See Dispholidus typus.)
tree viper (See Atheris squamigera.)friougulum. Lampropeltis_51, 53
trixonocéphale (See Bitis arictans.)

Trimeresurus ..... 7, 8, 118-9, 129, 133-4, 136, 169
Trinidad ..... 5: 1 - $-5: 1$
triscriatus. Crotalus. ..... - 0
trismus ..... 11, 183
tristis, Glyphodon ..... 142,149
Tropirlechis. ..... 154
true vipers (See V'iperidae.)
tsrhurlii. Mirrurus. ..... 60
Tsinghai ..... $115-30$
Tunisia ..... 77-8.4
Turkey, Asian ..... 10.)-13
Turkey, European ..... 71-6
turtle-designed snake (See Trimeresurusmucrosquamatus.)
twig snake (See TheTotornis kirtlandii.)typus. Disphotidus.$86-7,89,90,169$
ma-nao (See Laticamla colnbrina.) udlezinya (See Naja nirca.)
Uganda ..... 8.7-10:


## Vitrocalamus

 $139,143,145,154$ukhokhothi (See Thelotormis kirllandii.)
ular anang (See Ophiophatyus hannah.)
ular bakaw (See Trimercsurus uragleri.)
ular bandotan bedor (See Agkistromon rhomostoma.)
ular biludak (See Naja naja: Agkistronom rhodostoma.)
ular bednl (See Naja naja.)
ular hisa (See Trimeresurus sumatramus:
Trimeresurus gramincus: Trimeresurus popeorum.)
nlar chabe (See Matiemra intestimalis.)
ular gebuk (See A!kistrodon rhodostoma: Trimercsurus puniceus.)
nlar kapac damn (See Aglistrodom rhodostoma.)
nlar kapala dua (See Matiora intestinalis.)
ular katam tabur (See Bungarus fusciutus.)
ular kunyett terns (See Ophiophayus hamah.)
ular matahari (See Maticora birirguta.)
ular manti bulau (See Trimercsurus wagleri.)
ular puckuk (See Trimoresurus aragleri.)
nlar sina (See Maticora birirgata.)
nlar tanah (See Antistronlon rhodostoma.)
ular tandjon api (See Bungarus flaticops.)
ular tedong sendok (see Jaja maja.)
ular tjabeh (See Maticora intestimalis: Maticora bivirgata.)
ular welang (See l3ungarus fasciatus.)
nlar weling (See langarus candidus.)
ulupung (See Vaja naja.)
um jenaib (See Lehis carinatus.)
mombella snake (See bangurus multicinctus.)
umdlezinge (See Naja nirca.)
nmi hebi (See Pclamis plafurus.)
minlatus, bothrops.
. 10
unicolor. Crotalus $\qquad$ (i1, 68
United Arab Republic (Ëgypt) $\qquad$ Tー-84, 6! ! 10 : Inited shates ( Sere America, North) mmonoharbomma (See Pseulcolis ahstralis.) mobhiva (See Hemuchafus hacmashatus.) mobibi (See Hemachufus harmachatus.)
 uransschange (See Naja haje.)
 I'rurnas -.... urticaliat 143
I.S.S.R. (See Russia.)
uratu (See liothrops altcrmatus: Bothrops newricdi.)
valakachiyan (See Emhudrinte schistosd.)
valakadyen (See Emhydrina schistosa.)
ralahatyn, E"nhydrina (See Enhydrina schistosa.)





venom duct -...-.-.-...- 4. 14,

vent - ... . .........-.-.-. - 1 -
Ventrals 2か, 18:
Vermirella
143. 145. 155
verrugosa (See Larhesis mutus.)
resiculation

vine snake (See Thofotomis kirllondii.)
riper:
African desert horned (Shee Ccrastes cerastes.)
African lowland (See Vipera superciliaris.)
Amazonian tree (See Bothrops bilincatus.)
Armenian sand (Siee V'ipera ammollyles.)
Asian lanceheaded (See Trimeresurus.)
Asian sand (See Eristicophis murmahonii.)
Aricenna (See Cerastes ripera.)
Avicenna's sand (see (crastes ripera.)
bambon (Sice Trimeresurus albolabris:
Trimeresurus gramincus: Trimeresurus
stejnegeri.)
Bibron's (See Atractaspis bibronii.)
black burrowing (see Ifractaspis bibromii.) black-sontted palm (wee bothrops nigroviridis.) Burton's ("arpet (seer lichis colorathes.)
Buschelbranen (see bitix caldulis.)
hush (see .ltheris fifseloci: .theris stmamigera.) cape (See ('ansus thombcatus.)
earpet (See Eochis curinatus.)
Central Ifrican jumping (see bothrops nummifer.)
Ceylon hump-nosed (sere I!flixtrodon nepa.)
chatn (See Vipera russclii.)
(Chinese bambon (see Trimeresurus slejnegeri.)
Chinese sreen tree (sere Trimeresurus stejnegcri.)
common (see lipera bernes.)
domino (See V'ipera supereiliaris.)
Esyptian saw-scaled (see brhis carinatus.)
European (see loipera berms.)
exe-horned (See l'semducrastes persicus.)
eselash (See Bothrops sehlegelii.)
Fea's (See dzemiops foac.)
Field's horned (sieq Pwoulocrowsfes fichlii.)
Gaboon (see bitis gulomira.)
Gabun (see lBitis gabmion.)
glass (See l'ipera russelii.)
Great Lakes bish (See dheris nitsohei.)
greater cerastes ( See (erastos corastos.)
green (See . Wheris nitschri: ('thsus resimus.)
Ereen bush (see Alhrris syuthi!!ras.)
sreen tree (See Trimeresurus gramimens.)
hognosel (See Bofhrops lamsheryii: botheops masutus.)
horn (See Cerastes errastes.)
horned (Sere bitis raudulis: (crustes ecrastes.)
horned hog-nosed (Seer Bothropss nasutus.)
horned palm (see bothrops selifegelii.)
horned tree (Sees Atheris ecratophorus:
Trimeresurus cornutus.)
Hugy's (see l"ipera aspis.)
hump-nosed (See I!kistrodon h!!matc.)
Indian sreen tree (See Trimcrosurus gramincus.)
island (See bothrops insularis.)
Jerdon's (See Trimeresmins jerdonii.)
jumping (See Bothrops nummifer.)
Jura (See V'ipera aspis.)
Kensa horned (See Bitis worthingtoni.)
Ketten (See Vipera russclii.)






คи!


Wuntathe (síe l'iperel himbii.)
 lipeore lrhetina.)

Nitsohes trew (sero Itheris nitschci.)
Nurth Ifrican hormed (sico ferustes cerestes.)
Northern molo (sere Atrortaspis mierolepidota.)
sose-homent (sere fifis maxicermis.)
alive-green (see (ausus lichtenstcinii.)
()ttoman ( Kee Vipera xanthina.)

Dallestinian (Siee V'iperat xanthina palaestinac.)
Pallas's (see Iokistrodon halys.)
palm (Še Bofhrops menuricali.) bayer (see Trimeresurus gramincus.)
Eersian horned (See Pseulocerastes persicus.)
Pope's tres (see Trimeresurus popeorum.)
Rauhschuphige brush (see Itheris squamigeru.)
Renard's (See Vipera ursinii.)
rhinnereas horned (see Bitis nasicornis.)
rhinocerous (see bitis uasifornis.)
Russell's (See Tipera russelii.)
Sahara (Scee lipera lebetina.)
Saint Lucia (See lBothrops caribbacus.)
sand (See Vipera ammodytes.)
saw-scaled (see Eichis carinatus.)
Schlegel's palm (See Bothrop.s schlcyclii.)
sedge (See $A$ theris mitschei.)
snub-nosed (See Vipera latasti.) Sonthern mole (see Atractaspis bibronii.) Stejneger's palm (See Trimeresurus stcjncgeri.) Ursiniss (See V゙ipera ursimii.)
West African tree (See theris chlorchis.)
Western hog-nosed (See Bothrops lansbergii.)
Western mole (See Atractaspis corpulenta.)
white-lipned bamboo (See Trimcresurus albolabris.)
white-lipped tree (See Trimeresurus albolabris.)
worm-eating (See Adenorhinos barbouri.)
yellow-lined palm (See Bothrops lateralis.)
yellow-spotted palm (See Bothrops nigroviridis.)
Fipera__6, 72, 79, 84, 87, 89, 103, 160-7, 111, 119, 127, 131-5. 169
ripera, Cerastes $\qquad$ $78,83,106,169$
ripera cu corn (see Tipera ammodytes.)
vipere il cornes (see lbitis grabonira; Bilis nusicornis;
Cerastes cerastes.)
d'arbre (See Atheris chlorcchis.)
-demon (See Causus rhombeatus.)
vipère de Lataste (See Vipera latasti.)
vipère de l'Erg (See Cerastes ripera.)
vipère des pyramicles (See Echis carinatus.)
vipère du Cap (See Bitis arictans.)
vipère hébraique (See Bitis arictans.)




$10.8-1 \ddot{2}, 126 i-7,164$
riperime, lrarscoulutit

## vigrers:

$$
\begin{aligned}
& \text { Inrrowhaf (sice Itrartarpis.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { hoge-mosidl (siee liothrops.) }
\end{aligned}
$$

> mole (Siee Atractaspis.)
> palm (See Bothrops.)

> tiridis, Dendrodspis_--------------------------86, 94, 169
> ritiamus, Ogmorlon_
> $141,14 \%, 151$
> vuluvulu (See litis arictans.)

wavleri, Trimeresurus_ 118,138
wakabi (See Naja melanolenca.)
walli, Bungarus_ 116
walo-walo (See Lapemis harduickii.)
Walter Inmes's smake (See W'alterimucsia acguptia.)
Wralterimmesia $-79,81,106-7,108$
wamon-beni-hebi (See Calliophis macclellandii.)
uarro, Brachyurophis
wasserkobras (See Boulengerina.)
wassermokassinschlange (See Aghistrodon piscirorus.) watersnake, black (See Elapsoidca sundevallii.)
werr (See Dcnisonia coronuta.)
West Indies.
whip snake (See Demansia psammophis.)
whip snake:
black (See Demansia olivacea.)
Carpentaria (See Denisonia carpcutariac.)
little (See Denisonia flagellum; Denisonia gouldii.)
yellow-faced (See Demansia psammophis.)
white-lipped snake (See Denisonia coronoides.)
white-nosed snake (See Pseudechis australis.)
wiesenotter (See Vipera ursinii.)
willardi, Crotalus -....-..........................................

wortingtoni, Bitis__-_-...........................8. 88, 100, 109
wiistenkobra (See Walterimnesia acgyptia.)
wutu (See Bothrops alternatus.)
wyree (See Demansia psammophis.)
xanthima, Tipera
72, 75, 106, 112, 169
santhogrammus, Bothrops.
61

Famuhando (See Disphotidus typus.)
yangalnkwe (See Dispholidus typus; Thelotornis
kirtlandii.)
yarara (See Bothrops jajaraca.)
yarara nata (See Bothrops ammodytoides.)
yararaguassu (See Bothrops jararacussu.)
yellow-banded snake (See Hoplocephalus stephensii.)
jellow-headed snake (See Bungarus flaviceps.)
yellow-naped snake (See Aspidomorphus christicanus.)

yellow-spotted snake (See Hoplocephalus bungaroides.)

yennai viriyan (See lsungarus cacruleus.)
settadi viriyan (See Bungarus cacruleus.) yucatanicus, Bothrops50
Yugoslavia ..... 71-6, 169


## PLATE I

## Representative American Pit Vipers (CROTALIDAE)



Figure 1. Rock Rattlesnake, Crotalus lepidus. Photo by Hal B. Harrison: National Audubon. (See pp. 36, 50)


Figure 3. Cascabel, Crotalus durissus. Photo by Roy Pinney and Staten Island Zoo, (See p.68)


Figure 5. Broad-banded American Copperhead, Agkistrodon contortrix subspecies laticinctus. Photo by J. Markham. (See p. 39)


Figure 2. Massasauga, Sistrurus catenatus. Photo by Charles Hackenbrock and Staten Island Zoo. (See p. 44)


Figure 4. Cantil, Agkistrodon bilineatus. Photo by Hal B. Harrison: National Audubon. (See 1). 54)


Figure 6. Cottonmouth, Agkistrodon piscivorus. I'hoto by J. Markham. (See p. 39)

PLATE II
Representatives of Some Poisonous Snake Families


Fraure 1. European Viper, Vipera berus (VIPERIDAE). Photo by J. Markham. (See p. 74 )


Figure 4. Puff Adder, Bitis arietans (VIPERIDAE). Photo by J. Markham. (See p. 101)


Figure 2. Urutu, Bothrops alternatus (CRO'TALIDALE). I'hoto by J. Markham. (See p, 65)


Figure 3. River Jack, Bitis nasicornis (VIPERIDAE). Photo by J. Markham. (See 1). 102 )


Figure 5. Eastern Coral Snake, Micrurus fulvius (ELAPIDAE). Photo by Allan D. Cruickshank: National Audubon. (See p. 38)

## PLATE III

## Representatives of Some Poisonous Snake Families



Figure 1. Black Mamba, Dendroaspis polylepis (ELAPIDAE). Photo by J. Markham. (See 1. 93 )


Figure 3. Prairie Rattlesnake, Crotalus v. viridis (CROTALIDAE). Navy photo, courtesy U.S. National Zoological Park. (See 1. 42)


Figure 5. Cottonmouth, Agkistrodon piscivorus (CROTALIDAE). Navy photo, courtesy U.S. National Zoological Park. (See 1). 39)


Figure 2. Western Diamondback Rattlesnake, Crotalus atrox (CROTALIDAE). Navy photo, courtesy U.S. National Zoological Park. (See 1. 40 )


Figure 4. Timber Rattlesnake, Crotalus horridus (CROTALIDAE). Navy photo, courtesy U.S. National Zoological 'ark. (Sce p. 43)


Figure 6. American Copperhead, Agkistrodon contortrix (CROTALIDAE). Nars photo, courtesy U.S. National Zoological I'ark. (See p. 39)

## PLATE IV

Representative Pit Vipers (CROTALIDAE)


Froure 1. American Copperhead, Agkistrodon contortrix, southeastern U.S. Navy photo, courtesy U.S. Natioual Zoological Park. (See p, 39)


Figure 3. Green Tree Viper, Trimeresurus sp. Navy photo, courtesy U.S. National Zoological Park. (See p. 130)


Figure 5. Okinawa Habu, Trimeresurus flavoviridis. Navy photo, courtesy U.S. National Zoological Park. (See p. 137)


Fraure 4. Wagler's Pit Viper, Trimeresurus wagleri. Navy photo, courtesy U.S. National Zoological Park. (See p. 138)


Fiaure 6. Sakishima Habu, Trimeresurus elegans. Navy photo, courtesy U.S. National Zoological Park. (See p. 137)

## PLATE V

## Some Poisonous Snakes of Asia



Figure 1. Sharp-nosed Pit Viper, Agkistrodon acutus (CROTALIDAE). Navy photo, courtesy U.S. National Zoological Park. (See p. 136)


Figure 3. Chinese Mountain Viper, Trimeresurus monticola (CROTALIDAE). From a painting. (See p. 138)


Figure 2. Many-banded Krait, Bungarus multicinctus (ELAPIDAE). Navy photo, courtesy U.S. National Zoological Park. (See p. 120)


Figure 4. Chinese Habu, Trimeresurus mucrosquamatus (CROTAIIDAE). From a painting. (See p. 137)


Figure 6. MacClelland's Coral Snake, Calliophis macclellandii (ELAPIDAE). From a painting. (See p. 122)

## PLATE VI

Some Poisonous Snakes of Asia



Figure 1. Asian Coral Snake, Calliophis sauteri
(ELAl'IDAE). From a painting. (See p. 122)


Figure 2. Chinese Cobra, Naja naja atra (ELAPIDAE). Nary photo, courtesy U.S. National Zoological P'ark. (See p. 125)


Figure 4. Annulated Sea Snake, Hydrophis cyanocinctus (HYDROPHIDAE). Photo by Sherman A. Minton. (See p. 167)


Figure 3. Russell's Viper, l'ipera mussclii (ViPERIDAE). Navy photo. (See p. 127)


Fraure 5. Indian Krait, Bungarus cacruleus (ELAPIDAE). Photo by Sherman A. Minton. (See p. 120)

## 

Figure 1. Boomslang, Dispholidus typus (COLUBRIDAE). Brown coloration. Note lack of distinct pattern. (See p. 00)


Figure 7. Black Mole Viper, (See p. 95)

 (See p. 99)


Figure 4. Boomslang, Dispholidus typus (COLUBRIDAE). Juvenile


Figule E. Green Bush Viper, Atheris squamigera (VIDERIDAN:)



Figule $\overline{6}$. Green Bush 1

[^17]


 This eastern subspecies is unicolor over most of body. (See 1. 92)


Froure 10. Jameson's Mamba, Dendroaspis jamesoni (ELAPIDAE). Widespread arboreal mamba with a usually dark, of ten black, tail. (Sce p. 93)


Figure 11. Black Mamba, Dendroaspis polylepis (ELAPIDAF). Ground color varies between gray and brown. Scales never show gloss that they do in some cobras. (See p. 03)


Plate Vili. Some Poisonous Snakes of Africa
(From Pitman's Snakes of Uganda)

Figure 1. Bird Snake, Thelotornis kirllandii oblique dorsals, and lichen-like color pattern. (See p. 91)

Figure 2. Boomslang, Dispholidus typus (COLUBRIDAE). Green coloration. Note distinctly oblique dorsals and absence of distinct color pattern. (See p. 90)

##  <br> Fiaure 3. African Garter Snake, Elapsoidea <br> 


IGURE 4. Rhombic Night Adder, Causus
rhombeatus (VIPERIDAE). rhombeatus (VIPERIDAE). Chevron-shaped
head marking is distinctive.
(See p. 102)

Figure 5. Green Night Adder, Causus resimus

Qure 5. Green
(VIPERIDAE).
(VIPERIDAE). Oblique dorsals are charac-
teristic of the genus. (See p.102)
年


[^0]:    * To facilitate use of this chapter as a reference work, a separate table of contents has been provided.
    * To facilitate use of this chapter as a reference work, separate tables of contents have heen provided and placed at the beginning of each geographic section.

[^1]:    * NP $=$ Nonpolsonous

[^2]:    Try is indicated appropriately (SW $=$ southwest, etc.). The symbol ? indicates suspected occurrence of a species within the unit withont validiterature veredron Is. only ${ }^{3}$-Startuga Is. onls

[^3]:    * NP $=$ Nonpoisonous

[^4]:    country is imbleatorl ilypuri.
    In-iriction of a sheime fo bart of it
    wlthin the undt without valld Itterature.
    

[^5]:    * $\mathrm{NP}=$ Nonpoisonous

[^6]:    * A third has been described recently.

[^7]:    * $\mathrm{NP}=$ Nonpoisonous

[^8]:    * $\mathbf{N P}=$ Nonpoisonous

[^9]:    * NP = Nonpoisonous

[^10]:    * $\mathbf{N P}=$ Nonpoisonous

[^11]:    * Present in T. macrolepis of south India.

[^12]:    *NP—Nonpoisonous

[^13]:    
    

[^14]:    * This list of sources and types of antivenins is aceurate within the limits of the latest available information from manufacturers at the time of publication.

[^15]:    Bungarus fasciatus
    sputatrix (Malayan
    cobra), Agkistrodon
    (Banded krait), Naja n.

[^16]:    THAILAND＿－＿－＿－－－－－＿Queen Saovabha atute Memorial Institute， Rama IV Street，
    Bangkok Rama IV Street
    Bangkok

[^17]:    coloration. (see b. 90)

